Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768545

RESUMO

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous matrix metalloproteinase inhibitors. TIMP1 is produced by cancer cells and has pleiotropic activities. However, its role and source in multiple myeloma (MM) are unclear. Here, we evaluated TIMP1 protein and mRNA levels in bone marrow (BM) plasma cells and assessed the effects of TIMP1 expression on fibroblast invasive capacity using three-dimensional spheroid cell invasion assays. TIMP1 mRNA and protein levels were elevated when patients progressed from monoclonal gammopathy of undetermined significance or smouldering myeloma to MM. Furthermore, TIMP1 levels decreased at complete response and TIMP1 protein levels increased with higher international staging. TIMP1 mRNA levels were markedly higher in extramedullary plasmacytoma and MM with t(4;14). Overall survival and post-progression survival were significantly lower in MM patients with high TIMP1 protein. Recombinant TIMP1 did not directly affect MM cells but enhanced the invasive capacity of fibroblasts; this effect was suppressed by treatment with anti-TIMP1 antibodies. Fibroblasts supported myeloma cell invasion and expansion in extracellular matrix. Overall, these results suggested that MM-derived TIMP1 induces the invasive phenotype in fibroblasts and is involved in disease progression. Further studies are required to elucidate the specific roles of TIMP1 in MM and facilitate the development of novel therapies targeting the TIMP1 pathway.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo , Fenótipo , Progressão da Doença
2.
J Cell Sci ; 131(9)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29632240

RESUMO

Heat shock transcription factor 1 (HSF1) regulates the expression of a wide array of genes, controls the expression of heat shock proteins (HSPs) as well as cell growth. Although acute depletion of HSF1 induces cellular senescence, the underlying mechanisms are poorly understood. Here, we report that HSF1 depletion-induced senescence (HDIS) of human diploid fibroblasts (HDFs) was independent of HSP-mediated proteostasis but dependent on activation of the p53-p21 pathway, partly because of the increased expression of dehydrogenase/reductase 2 (DHRS2), a putative MDM2 inhibitor. We observed that HDIS occurred without decreased levels of major HSPs or increased proteotoxic stress in HDFs. Additionally, VER155008, an inhibitor of HSP70 family proteins, increased proteotoxicity and suppressed cell growth but failed to induce senescence. Importantly, we found that activation of the p53-p21 pathway resulting from reduced MDM2-dependent p53 degradation was required for HDIS. Furthermore, we provide evidence that increased DHRS2 expression contributes to p53 stabilization and HDIS. Collectively, our observations uncovered a molecular pathway in which HSF1 depletion-induced DHRS2 expression leads to activation of the MDM2-p53-p21 pathway required for HDIS.


Assuntos
Fibroblastos/metabolismo , Fatores de Transcrição de Choque Térmico/deficiência , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Proliferação de Células , Senescência Celular/fisiologia , Diploide , Fibroblastos/citologia , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética
3.
J Cell Sci ; 131(12)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29777036

RESUMO

Growth of precancerous and cancer cells relies on their tolerance of oncogene-induced replication stress (RS). Translesion synthesis (TLS) plays an essential role in the cellular tolerance of various types of RS and bypasses replication barriers by employing specialized polymerases. However, limited information is available about the role of TLS polymerases in oncogene-induced RS. Here, we report that Polη, a Y-family TLS polymerase, promotes cellular tolerance of Myc-induced RS. Polη was recruited to Myc-induced RS sites, and Polη depletion enhanced the Myc-induced slowing and stalling of replication forks and the subsequent generation of double-strand breaks (DSBs). Overexpression of a catalytically dead Polη also promoted Myc-induced DSB formation. In the absence of Polη, Myc-induced DSB formation depended on MUS81-EME2 (the S-phase-specific endonuclease complex), and concomitant depletion of MUS81-EME2 and Polη enhanced RS and cell death in a synergistic manner. Collectively, these results indicate that Polη facilitates fork progression during Myc-induced RS, thereby helping cells tolerate the resultant deleterious effects. Additionally, the present study highlights the possibility of a synthetic sickness or lethality between Polη and MUS81-EME2 in cells experiencing Myc-induced RS.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Genes myc , Neoplasias/enzimologia , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Pontos de Checagem do Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Melanoma/enzimologia , Melanoma/genética , Neoplasias/genética , Neoplasias/patologia , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Eur J Haematol ; 104(6): 526-537, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32003046

RESUMO

OBJECTIVE: Myelodysplastic syndromes (MDS), caused by various genetic mutations in hematopoietic stem cells, are associated with highly variable outcomes. Poly (ADP-ribose) polymerase-1 (PARP1) plays an important role in DNA damage repair and contributes to the progression of several types of cancer. Here, we investigated the impact of PARP1 V762A polymorphism on the susceptibility to and prognosis of MDS. METHODS: Samples collected from 105 MDS patients and 202 race-matched healthy controls were subjected to polymerase chain reaction-restriction fragment length polymorphism for genotyping. RESULTS: The allele and genotype frequencies of PARP1 V762A did not differ between MDS patients and the control group. However, MDS patients with the PARP1 V762A non-AA genotype, which is associated with high gene activity, had shorter overall survival rates (P = .01) than those with the AA genotype. Multivariate analysis of overall survival also revealed PARP1 V762A non-AA genotype as a poor prognostic factor (P = .02). When patients were analyzed according to treatment history, the PARP1 V762A non-AA genotype was only associated with poor survival in patients who had received treatment (P = .02). CONCLUSION: PARP1 V762A polymorphism may be an independent prognostic factor for MDS, and a predictive biomarker for MDS treatment.


Assuntos
Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Poli(ADP-Ribose) Polimerase-1/genética , Polimorfismo Genético , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Feminino , Frequência do Gene , Genótipo , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Razão de Chances , Prognóstico , Adulto Jovem
5.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992461

RESUMO

Long noncoding RNAs (lncRNAs) are deregulated in human cancers and are associated with disease progression. Plasmacytoma Variant Translocation 1 (PVT1), a lncRNA, is located adjacent to the gene MYC, which has been linked to multiple myeloma (MM). PVT1 is expressed in MM and is associated with carcinogenesis. However, its role and regulation remain uncertain. We examined PVT1/MYC expression using real-time PCR in plasma cells purified from 59 monoclonal gammopathy of undetermined significance (MGUS) and 140 MM patients. The MM cell lines KMS11, KMS12PE, OPM2, and RPMI8226 were treated with JQ1, an MYC super-enhancer inhibitor, or MYC inhibitor 10058-F4. The expression levels of PVT1 and MYC were significantly higher in MM than in MGUS (p < 0.0001) and were positively correlated with disease progression (r = 0.394, p < 0.0001). JQ1 inhibited cell proliferation and decreased the expression levels of MYC and PVT1. However, 10054-F4 did not alter the expression level of PVT1. The positive correlation between MYC and PVT1 in patients, the synchronous downregulation of MYC and PVT1 by JQ1, and the lack of effect of the MYC inhibitor on PVT1 expression suggest that the expression of these two genes is co-regulated by a super-enhancer. Cooperative effects between these two genes may contribute to MM pathogenesis and progression.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Progressão da Doença , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Acetamidas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Azepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/patologia , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Tiazóis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Adulto Jovem
6.
Mol Cell ; 37(1): 79-89, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20129057

RESUMO

DNA polymerase eta (Pol eta) is a member of the mammalian Y family polymerases and performs error-free translesion synthesis across UV-damaged DNA. For this function, Pol eta accumulates in nuclear foci at replication stalling sites via its interaction with monoubiquitinated PCNA. However, little is known about the posttranslational control mechanisms of Pol eta, which regulate its accumulation in replication foci. Here, we report that the molecular chaperone Hsp90 promotes UV irradiation-induced nuclear focus formation of Pol eta through control of its stability and binding to monoubiquitinated PCNA. Our data indicate that Hsp90 facilitates the folding of Pol eta into an active form in which PCNA- and ubiquitin-binding regions are functional. Furthermore, Hsp90 inhibition potentiates UV-induced cytotoxicity and mutagenesis in a Pol eta-dependent manner. Our studies identify Hsp90 as an essential regulator of Pol eta-mediated translesion synthesis.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Benzoquinonas/farmacologia , Linhagem Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/análise , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Lactamas Macrocíclicas/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Raios Ultravioleta
7.
Cell Prolif ; 56(6): e13398, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36642815

RESUMO

Cellular senescence is linked to a wide range of age-related diseases and can be triggered by a variety of stresses, including DNA damage. A variety of genotoxic stressors, such as anti-cancer drugs, cause DNA double-strand breaks (DSBs), which trigger the accumulation of the tumour suppressor protein p53 in the nucleus. Cellular stresses stabilize and activate the p53 signalling pathway, which regulates various cellular processes, such as apoptosis, DNA repair, and senescence. Although p53 signalling is a well-known tumour suppressor pathway, it remains unclear how it is regulated during cellular senescence. Here, we show that p53-binding protein 1 (53BP1) accumulation in the nuclear foci is required for DNA damage-induced cellular senescence via p53 activation. In human immortalized fibroblast, shRNA-mediated 53BP1 depletion decreased not only the expression of p53-target genes but also the cellular senescence induced by adriamycin treatment. Furthermore, we confirmed that DSBs trigger the hyperaccumulation of 53BP1 in the nuclear foci, which plays a key role in the regulation of cellular senescence. To prevent the accumulation of 53BP1 in the nuclear foci, we used phase separation inhibitors, and siRNA against RNF168, which accumulates at DSB loci and forms complexes with 53BP1. This blocks the formation of 53BP1 nuclear foci and DNA damage-induced cellular senescence by activating the p53 signaling pathway. In conclusion,   we demonstrated that increased accumulation of 53BP1 in the nuclear foci following DNA damage activates p53 and governs cellular senescence via a liquid-liquid phase separation mechanism.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Supressora de Tumor p53 , Humanos , Núcleo Celular/metabolismo , Senescência Celular , Dano ao DNA , Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Clin Exp Med ; 23(6): 2695-2703, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36913034

RESUMO

Cellular senescence is a stable cell cycle arrest, usually in response to internal and/or external stress, including telomere dysfunction, abnormal cellular growth, and DNA damage. Several chemotherapeutic drugs, such as melphalan (MEL) and doxorubicin (DXR), induce cellular senescence in cancer cells. However, it is not clear whether these drugs induce senescence in immune cells. We evaluated the induction of cellular senescence in T cells were derived from human peripheral blood mononuclear cells (PBMNCs) in healthy donors using sub-lethal doses of chemotherapeutic agents. The PBMNCs were kept overnight in RPMI 1640 medium with 2% phytohemagglutinin and 10% fetal bovine serum and then cultured in RPMI 1640 with 20 ng/mL IL-2 and sub-lethal doses of chemotherapeutic drugs (2 µM MEL and 50 nM DXR) for 48 h. Sub-lethal doses of chemotherapeutic agents induced phenotypes associated with senescence, such as the formation of γH2AX nuclear foci, cell proliferation arrest, and induction of senescence-associated beta-galactosidase (SA-ß-Gal) activity, (control vs. MEL, DXR; median mean fluorescence intensity (MFI) 1883 (1130-2163) vs. 2233 (1385-2254), 2406.5 (1377-3119), respectively) in T cells. IL6 and SPP1 mRNA, which are senescence-associated secretory phenotype (SASP) factors, were significantly upregulated by sublethal doses of MEL and DXR compared to the control (P = 0.043 and 0.018, respectively). Moreover, sub-lethal doses of chemotherapeutic agents significantly enhanced the expression of programmed death 1 (PD-1) on CD3 + CD4 + and CD3 + CD8 + T cells compared to the control (CD4 + T cells; P = 0.043, 0.043, and 0.043, respectively, CD8 + T cells; P = 0.043, 0.043, and 0.043, respectively). Our results suggest that sub-lethal doses of chemotherapeutic agents induce senescence in T cells and tumor immunosuppression by upregulating PD-1 expression on T cells.


Assuntos
Leucócitos Mononucleares , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/genética , Regulação para Cima , Senescência Celular/genética , Doxorrubicina/farmacologia , Linfócitos T CD4-Positivos
9.
Cancer Gene Ther ; 29(2): 225-240, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619341

RESUMO

Major histocompatibility complex class II (MHC II) is important for the adaptive immune response because MHC II presents processed antigens to a cluster of differentiation 4 (CD4)-positive T-cells. Conventional doses of chemotherapeutic agents induce tumor cell death by causing DNA double-strand breaks (DSBs). However, cellular responses caused by sub-lethal doses of chemotherapeutic agents are poorly understood. In this study, using low doses of chemotherapeutic agents, we showed that DSBs enhanced the expression of MHC II on cells that originate from antigen-presenting cells (APCs). These agents induced the MHC class II transactivator (CIITA), the master regulator of MHC II, and interferon regulatory factor 1 (IRF1), a transcription factor for CIITA. Short hairpin RNA against IRF1 suppressed chemotherapeutic agent-induced CIITA expression, whereas exogenous expression of IRF1 induced CIITA. Inhibition of ataxia-telangiectasia mutated (ATM), a DSB-activated kinase, suppressed induction of IRF1, CIITA, and MHC II. Similar results were observed by inhibiting NF-κB, a downstream target of ATM. These results suggest that DSBs induce MHC II activity via the ATM-NF-κB-IRF1-CIITA pathway in cells that intrinsically present antigens. Additionally, chemotherapeutic agents induced T-cell regulatory molecules. Our findings suggest that chemotherapeutic agents enhance the antigen presentation activity of APCs for T-cell activation.


Assuntos
Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/genética , Complexo Principal de Histocompatibilidade , Proteínas Nucleares , Regiões Promotoras Genéticas , Transativadores
10.
Genes (Basel) ; 14(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672841

RESUMO

MicroRNAs (miRNAs and miRs) are small (19-25 base pairs) non-coding RNAs with the ability to modulate gene expression. Previously, we showed that the miR-34 family is downregulated in multiple myeloma (MM) as the cancer progressed. In this study, we aimed to clarify the mechanism of miRNA dysregulation in MM. We focused particularly on the interaction between MYC and the TP53-miR34 axis because there is a discrepancy between increased TP53 and decreased miR-34 expressions in MM. Using the nutlin-3 or Tet-on systems, we caused wild-type (WT) p53 protein accumulation in human MM cell lines (HMCLs) and observed upregulated miR-34 expression. Next, we found that treatment with an Myc inhibitor alone did not affect miR-34 expression levels, but when it was coupled with p53 accumulation, miR-34 expression increased. In contrast, forced MYC activation by the MYC-ER system reduced nutlin-3-induced miR-34 expression. We also observed that TP53 and MYC were negatively correlated with mature miR-34 expressions in the plasma cells of patients with MM. Our results suggest that MYC participates in the suppression of p53-dependent miRNA expressions. Because miRNA expression suppresses tumors, its inhibition leads to MM development and malignant transformation.


Assuntos
MicroRNAs , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Transformação Celular Neoplásica
11.
Cancers (Basel) ; 13(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525741

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.

12.
Clin Exp Med ; 21(2): 323-329, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33709342

RESUMO

Single-nucleotide polymorphisms (SNPs) of the IDO1 and IDO2 genes have been associated with some diseases. Here, we investigated the association of IDO1 and IDO2 SNPs with the susceptibility to multiple myeloma (MM) and their relationships with MM clinical features. We obtained genomic DNA from 100 patients with MM and 149 healthy race-matched controls and determined IDO1 promoter - 1849G/T (rs3824259) and IDO2 R248W (rs10109853) genotypes by using the polymerase chain reaction-restriction fragment length polymorphism method. The patients with MM had a significantly higher frequency of the IDO2 R248W RR genotype (high-activity type) (59.0% vs. 43.6%, odds ratio = 1.86, 95% confidence interval = 1.11-3.11, P = 0.017) compared with those in healthy controls. Patients with the IDO2 R248W RR genotype (high-activity type) were significantly younger and had a significantly lower frequency of International Staging System (ISS) stage III condition than those with the RW and WW genotypes (median 63 years vs. 69 years, P = 0.025; 15 [25.4%] vs. 50 [48.8%]). In addition, the IDO2 R248W RR genotype was significantly associated with a higher level of hemoglobin at diagnosis (mean ± standard deviation, 10.7 ± 2.36 vs. 9.27 ± 2.40 g/dL; P = 0.0032). Neither polymorphism significantly affected overall survival. Our study indicates that IDO2 R248W may be associated with the susceptibility to MM and severity of anemia.


Assuntos
Predisposição Genética para Doença , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Prognóstico , Adulto Jovem
13.
Cancers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033262

RESUMO

Acute myeloid leukemia (AML) with granulocytic sarcoma (GS) is characterized by poor prognosis; however, its underlying mechanism is unclear. Bone marrow samples from 64 AML patients (9 with GS and 55 without GS) together with AML cell lines PL21, THP1, HL60, Kasumi-1, and KG-1 were used to elucidate the pathology of AML with GS. RNA-Seq analyses were performed on samples from seven AML patients with or without GS. Gene set enrichment analyses revealed significantly upregulated candidates on the cell surface of the GS group. Expression of the adhesion integrin α7 (ITGA7) was significantly higher in the GS group, as seen by RT-qPCR (p = 0.00188) and immunohistochemistry of bone marrow formalin-fixed, paraffin-embedded (FFPE) specimens. Flow cytometry revealed enhanced proliferation of PL21 and THP1 cells containing surface ITGA7 in the presence of laminin 211 and stimulated ERK phosphorylation; this effect was abrogated following ITGA7 knockdown or ERK inhibition. Overall, high ITGA7 expression was associated with poor patient survival (p = 0.0477). In summary, ITGA7 is highly expressed in AML with GS, and its ligand (laminin 211) stimulates cell proliferation through ERK signaling. This is the first study demonstrating the role of integrin α7 and extracellular matrix interactions in AML cell proliferation and extramedullary disease development.

14.
Nihon Rinsho ; 66(3): 477-82, 2008 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-18330024

RESUMO

Fanconi anemia (FA) is a genetically heterogeneous inherited disorder characterized by progressive bone marrow failure, development of hematopoietic and solid malignancies and genomic instability. 13 FA proteins, identified to date, closely cooperate with familial breast cancer susceptibility proteins such as BRCA2 and PALB2, thereby forming 'the FA/BRCA molecular network'. Here I summarize our recent understanding of the molecular network and its significance in the pathogenesis of FA. I emphasize that FA provides an excellent genetic model for studying senescence and malignant transformation of human hematopoietic stem cells.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas/patologia , Proteínas Reguladoras de Apoptose , Proteína BRCA2/genética , Transformação Celular Neoplásica/genética , Aberrações Cromossômicas , Proteína do Grupo de Complementação N da Anemia de Fanconi , Humanos , Mutação , Síndromes Mielodisplásicas/etiologia , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética
15.
Int J Hematol ; 108(3): 246-253, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29737460

RESUMO

Recent studies have shown that tumors of relapsed acute myeloid leukemia (AML) present additional genetic mutations compared to the primary tumors. The base excision repair (BER) pathway corrects oxidatively damaged mutagenic bases and plays an important role in maintaining genetic stability. The purpose of the present study was to investigate the relationship between BER functional polymorphisms and AML relapse. We focused on five major polymorphisms: OGG1 S326C, MUTYH Q324H, APE1 D148E, XRCC1 R194W, and XRCC1 R399Q. Ninety-four adults with AML who achieved first complete remission were recruited. Genotyping was performed with the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The OGG1 S326C CC genotype (associated with lower OGG1 activity) was observed more frequently in patients with AML relapse [28.9 vs. 8.9%, odds ratio (OR) = 4.10, 95% confidence interval (CI) = 1.35-12.70, P = 0.01]. Patients with the CC genotype exhibited shorter relapse-free survival (RFS). Moreover, the TCGA database suggested that low OGG1 expression in AML cells is associated with a higher frequency of mutations. The present findings suggest that the OGG1 S326C polymorphism increased the probability of AML relapse and may be useful as a prognostic factor for AML relapse risk.


Assuntos
DNA Glicosilases/genética , Reparo do DNA/genética , Reparo do DNA/fisiologia , Estudos de Associação Genética , Genótipo , Leucemia Mieloide Aguda/genética , Mutação , Polimorfismo Genético , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Dano ao DNA , Intervalo Livre de Doença , Feminino , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prognóstico , Espécies Reativas de Oxigênio , Recidiva , Risco , Taxa de Sobrevida , Adulto Jovem
17.
Exp Hematol ; 32(1): 113-21, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14725908

RESUMO

Cbl is one of the major tyrosine-phosphorylated proteins in Bcr-Abl-expressing cells. A direct association between the SH2 domain of Bcr-Abl and tyrosine-phosphorylated Cbl has been demonstrated. The purpose of this study was to determine if and how unphosphorylated Cbl and Bcr-Abl may associate. Interactions between Cbl and Bcr-Abl were investigated in yeast two- and three-hybrid systems, gel overlay assays, and immunoprecipitates from mammalian cells expressing wild-type and the Y177F mutant of Bcr-Abl. No direct interaction between Bcr-Abl and unphosphorylated Cbl was observed. Bcr-Abl did, however, associate with Grb2, an adaptor protein that binds tyrosine 177 of Bcr-Abl. Additionally, Grb2 interacted with Cbl. In a yeast three-hybrid assay, Grb2 mediated an interaction between Cbl and Bcr-Abl that was dependent on a functional Grb2 binding site. This interaction was confirmed in vitro using purified proteins. In cells expressing Bcr-Abl with a mutation in the Grb2 binding site, binding of Cbl to Bcr-Abl was significantly reduced, but Cbl tyrosine phosphorylation was maintained. Imatinib treatment of these cells further reduced but did not abrogate Cbl binding, reflecting residual kinase activity. Multiple phosphotyrosine-dependent and -independent interactions stabilize the interaction between Cbl and Abl. Grb2 or another, yet unidentified, protein may mediate an initial interaction between Cbl and Bcr-Abl that is independent of Cbl tyrosine phosphorylation. Following this initial interaction, Cbl can then become tyrosine phosphorylated and interact with the SH2 domain of Bcr-Abl, further stabilizing the complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Fusão bcr-abl/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina-Proteína Ligases , Animais , Benzamidas , Proteína Adaptadora GRB2 , Humanos , Mesilato de Imatinib , Camundongos , Fosforilação , Piperazinas/farmacologia , Proteínas/química , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-cbl , Pirimidinas/farmacologia , Técnicas do Sistema de Duplo-Híbrido , Tirosina/metabolismo , Domínios de Homologia de src
18.
Mol Cell Biol ; 35(4): 699-715, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487575

RESUMO

DNA rereplication is a major form of aberrant replication that causes genomic instabilities, such as gene amplification. However, little is known about which DNA polymerases are involved in the process. Here, we report that low-fidelity Y-family polymerases (Y-Pols), Pol η, Pol ι, Pol κ, and REV1, significantly contribute to DNA synthesis during rereplication, while the replicative polymerases, Pol δ and Pol ε, play an important role in rereplication, as expected. When rereplication was induced by depletion of geminin, these polymerases were recruited to rereplication sites in human cell lines. This finding was supported by RNA interference (RNAi)-mediated knockdown of the polymerases, which suppressed rereplication induced by geminin depletion. Interestingly, epistatic analysis indicated that Y-Pols collaborate in a common pathway, independently of replicative polymerases. We also provide evidence for a catalytic role for Pol η and the involvement of Pol η and Pol κ in cyclin E-induced rereplication. Collectively, our findings indicate that, unlike normal S-phase replication, rereplication induced by geminin depletion and oncogene activation requires significant contributions of both Y-Pols and replicative polymerases. These findings offer important mechanistic insights into cancer genomic instability.


Assuntos
Reparo do DNA , Replicação do DNA , DNA de Neoplasias/genética , DNA Polimerase Dirigida por DNA/genética , Regulação Neoplásica da Expressão Gênica , Genoma , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Dano ao DNA , DNA de Neoplasias/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Geminina/deficiência , Geminina/genética , Vetores Genéticos , Instabilidade Genômica , Células HCT116 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lentivirus/genética , Transgenes
19.
Hum Mutat ; 21(5): 555, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12673805

RESUMO

Fanconi anemia (FA) is a rare autosomal recessive disorder of hematopoiesis with eight complementation groups (FA-A, B, C, D1, D2, E, F and G). To date, seven of the FA genes have been identified. Although extensive analyses in Western countries revealed that the subgroup prevalence and mutational spectrum vary depending on the ethnic background, not much data is available on Asian populations. In the present study, 45 unrelated FA families in Japan were screened for FA gene mutations and 10 families with biallelic pathogenic mutations of FANCG/XRCC9, the gene for FA-G, were identified. A splice mutation IVS3+1G>C was detected in all 9 Japanese families, among whom 4 were homozygous and 5 were heterozygous. Among the heterozygotes, three carried 1066C>T in the second allele. In addition, a family homozygous for 1066C>T with Korean ethnicity was identified. Haplotype analysis by means of 9 microsatellite markers spanning the FANCG locus indicates that IVS3+1G>C and 1066C>T are in complete association with distinct ancestry haplotypes. Our data suggest that IVS3+1G>C arose in the Japanese ancestors at a relatively early time, whereas 1066C>T later on migrated from Korea. The two founder mutations with distinct origins account for most of FANCG mutant alleles in the Japanese population.


Assuntos
Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Adolescente , Adulto , Criança , Pré-Escolar , DNA/química , DNA/genética , Análise Mutacional de DNA , Saúde da Família , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação G da Anemia de Fanconi , Feminino , Efeito Fundador , Genótipo , Haplótipos , Humanos , Japão , Masculino , Mutação
20.
Hum Mutat ; 24(6): 481-90, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15523645

RESUMO

Fanconi anemia (FA) is a rare autosomal recessive disorder of hematopoiesis, with at least 11 complementation groups. FANCA, a gene for group A, accounts for the majority of FA patients. Previous studies of FANCA mutations revealed high allelic heterogeneity, frequent occurrence of large deletions, and interpopulation differences. However, systematic mutational analysis, including gene dosage assay to detect large deletions, has not been documented for Asian populations. A newly developed TaqMan quantitative PCR-based gene dosage assay, combined with sequencing of exons and cDNA fragments, allowed for detection of 48 mutant alleles of FANCA in 27 (77%) of 35 unrelated Japanese FA families with no detectable mutations in FANCC or FANCG. We identified 29 different mutations (21 nucleotide substitutions or small deletions/insertions and eight large deletions), at least 20 of which were novel. The FANCA mutational spectrum of the Japanese was different from that of other ethnic groups so far studied. This is the largest scale of mutation analysis of FANCA in the Japanese population. Characterization of these mutations provided new information regarding the mutagenesis mechanisms and structure-function relationship of FANCA. Specifically, our data suggest that diverse mechanisms including nonhomologous recombination as well as Alu-mediated homologous recombination are involved in the generation of large deletions in FANCA.


Assuntos
Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Mutação , Povo Asiático , Sequência de Bases , DNA , Análise Mutacional de DNA , Proteína do Grupo de Complementação A da Anemia de Fanconi , Deleção de Genes , Dosagem de Genes , Testes Genéticos , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA