Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177725

RESUMO

Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.


Assuntos
Amputados , Membros Artificiais , Humanos , Retroalimentação , Tecnologia Háptica , Qualidade de Vida , Extremidade Inferior , , Caminhada , Marcha , Fenômenos Biomecânicos
2.
Sensors (Basel) ; 20(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098102

RESUMO

This study presents an improved strategy for the detection and localization of small size nodules (down to few mm) of agar in excised pork liver tissues via pulse-echo ultrasound measurements performed with a 16 MHz needle probe. This work contributes to the development of a new generation of medical instruments to support robotic surgery decision processes that need information about cancerous tissues in a short time (minutes). The developed ultrasonic probe is part of a scanning platform designed for the automation of surgery-associated histological analyses. It was coupled with a force sensor to control the indentation of tissue samples placed on a steel plate. For the detection of nodules, we took advantage of the property of nodules of altering not only the acoustical properties of tissues producing ultrasound attenuation, but also of developing patterns at their boundary that can modify the shape and the amplitude of the received echo signals from the steel plate supporting the tissues. Besides the Correlation Index Amplitude (CIA), which is linked to the overall amplitude changes of the ultrasonic signals, we introduced the Correlation Index Shape (CIS) linked to their shape changes. Furthermore, we applied AND-OR logical operators to these correlation indices. The results were found particularly helpful in the localization of the irregular masses of agar we inserted into some excised liver tissues, and in the individuation of the regions of major interest over which perform the vertical dissections of tissues in an automated analysis finalized to histopathology. We correctly identified up to 89% of inclusions, with an improvement of about 14% with respect to the result obtained (78%) from the analysis performed with the CIA parameter only.


Assuntos
Fígado/patologia , Fígado/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Animais , Humanos , Suínos
3.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155900

RESUMO

This paper reviews automated visual-based defect detection approaches applicable to various materials, such as metals, ceramics and textiles. In the first part of the paper, we present a general taxonomy of the different defects that fall in two classes: visible (e.g., scratches, shape error, etc.) and palpable (e.g., crack, bump, etc.) defects. Then, we describe artificial visual processing techniques that are aimed at understanding of the captured scenery in a mathematical/logical way. We continue with a survey of textural defect detection based on statistical, structural and other approaches. Finally, we report the state of the art for approaching the detection and classification of defects through supervised and non-supervised classifiers and deep learning.

4.
Sensors (Basel) ; 19(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426480

RESUMO

In precision sports, the control of breathing and heart rate is crucial to help the body to remain stable in the shooting position. To improve stability, archers try to adopt similar breathing patterns and to have a low heartbeat during each shot. We proposed an easy-to-use and unobtrusive smart textile (ST) which is able to detect chest wall excursions due to breathing and heart beating. The sensing part is based on two FBGs housed into a soft polymer matrix to optimize the adherence to the chest wall and the system robustness. The ST was assessed on volunteers to figure out its performance in the estimation of respiratory frequency (fR) and heart rate (HR). Then, the system was tested on two archers during four shooting sessions. This is the first study to monitor cardio-respiratory activity on archers during shooting. The good performance of the ST is supported by the low mean absolute percentage error for fR and HR estimation (≤1.97% and ≤5.74%, respectively), calculated with respect to reference signals (flow sensor for fR, photopletismography sensor for HR). Moreover, results showed the capability of the ST to estimate fR and HR during different phases of shooting action. The promising results motivate future investigations to speculate about the influence of fR and HR on archers' performance.


Assuntos
Frequência Cardíaca/fisiologia , Monitorização Fisiológica/métodos , Adulto , Feminino , Humanos , Masculino , Respiração , Esportes , Dispositivos Eletrônicos Vestíveis , Adulto Jovem
5.
Sensors (Basel) ; 19(3)2019 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717482

RESUMO

Advancements in the study of the human sense of touch are fueling the field of haptics. This is paving the way for augmenting sensory perception during object palpation in tele-surgery and reproducing the sensed information through tactile feedback. Here, we present a novel tele-palpation apparatus that enables the user to detect nodules with various distinct stiffness buried in an ad-hoc polymeric phantom. The contact force measured by the platform was encoded using a neuromorphic model and reproduced on the index fingertip of a remote user through a haptic glove embedding a piezoelectric disk. We assessed the effectiveness of this feedback in allowing nodule identification under two experimental conditions of real-time telepresence: In Line of Sight (ILS), where the platform was placed in the visible range of a user; and the more demanding Not In Line of Sight (NILS), with the platform and the user being 50 km apart. We found that the entailed percentage of identification was higher for stiffer inclusions with respect to the softer ones (average of 74% within the duration of the task), in both telepresence conditions evaluated. These promising results call for further exploration of tactile augmentation technology for telepresence in medical interventions.


Assuntos
Retroalimentação Sensorial/fisiologia , Palpação/instrumentação , Dedos/fisiologia , Gestos , Luvas Protetoras , Humanos , Imagens de Fantasmas , Tato/fisiologia , Interface Usuário-Computador
6.
Sensors (Basel) ; 19(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159334

RESUMO

This study presents a platform for ex-vivo detection of cancer nodules, addressing automation of medical diagnoses in surgery and associated histological analyses. The proposed approach takes advantage of the property of cancer to alter the mechanical and acoustical properties of tissues, because of changes in stiffness and density. A force sensor and an ultrasound probe were combined to detect such alterations during force-regulated indentations. To explore the specimens, regardless of their orientation and shape, a scanned area of the test sample was defined using shape recognition applying optical background subtraction to the images captured by a camera. The motorized platform was validated using seven phantom tissues, simulating the mechanical and acoustical properties of ex-vivo diseased tissues, including stiffer nodules that can be encountered in pathological conditions during histological analyses. Results demonstrated the platform's ability to automatically explore and identify the inclusions in the phantom. Overall, the system was able to correctly identify up to 90.3% of the inclusions by means of stiffness in combination with ultrasound measurements, paving pathways towards robotic palpation during intraoperative examinations.


Assuntos
Neoplasias/diagnóstico por imagem , Robótica , Animais , Humanos , Ultrassonografia
8.
Sensors (Basel) ; 14(3): 4755-90, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24618725

RESUMO

This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

9.
Sensors (Basel) ; 14(1): 1073-93, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24412902

RESUMO

This paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a remote data computing/storing unit. The pressure-sensitive technology is based on an optoelectronic technology developed at Scuola Superiore Sant'Anna. The insole is a low-cost and low-power battery-powered device. The design and development of the device is presented along with its experimental characterization and validation with healthy subjects performing a task of walking at different speeds, and benchmarked against an instrumented force platform.


Assuntos
Técnicas Biossensoriais , Marcha/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Humanos , Pressão , Software
10.
Sensors (Basel) ; 14(12): 23781-802, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25615726

RESUMO

The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor.


Assuntos
Técnicas Biossensoriais , Pele Artificial , Tato/fisiologia , Impedância Elétrica , Eletrodos , Humanos , Mecanotransdução Celular/fisiologia
11.
Biophys Rev (Melville) ; 5(2): 021401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895135

RESUMO

Microelectrode recordings from human peripheral and cranial nerves provide a means to study both afferent and efferent axonal signals at different levels of detail, from multi- to single-unit activity. Their analysis can lead to advancements both in diagnostic and in the understanding of the genesis of neural disorders. However, most of the existing computational toolboxes for the analysis of microneurographic recordings are limited in scope or not open-source. Additionally, conventional burst-based metrics are not suited to analyze pathological conditions and are highly sensitive to distance of the microelectrode tip from the active axons. To address these challenges, we developed an open-source toolbox that offers advanced analysis capabilities for studying neuronal reflexes and physiological responses to peripheral nerve activity. Our toolbox leverages the observation of temporal sequences of action potentials within inherently cyclic signals, introducing innovative methods and indices to enhance analysis accuracy. Importantly, we have designed our computational toolbox to be accessible to novices in biomedical signal processing. This may include researchers and professionals in healthcare domains, such as clinical medicine, life sciences, and related fields. By prioritizing user-friendliness, our software application serves as a valuable resource for the scientific community, allowing to extract advanced metrics of neural activity in short time and evaluate their impact on other physiological variables in a consistent and standardized manner, with the final aim to widen the use of microneurography among researchers and clinicians.

12.
Sensors (Basel) ; 13(2): 1435-66, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23348032

RESUMO

This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed.


Assuntos
Pele Artificial , Tato/fisiologia , Animais , Humanos , Mecanotransdução Celular , Fenômenos Fisiológicos da Pele
13.
Bioengineering (Basel) ; 10(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37508792

RESUMO

BACKGROUND: This overview aimed to characterize the type, development, and use of haptic technologies for maxillofacial surgical purposes. The work aim is to summarize and evaluate current advantages, drawbacks, and design choices of presented technologies for each field of application in order to address and promote future research as well as to provide a global view of the issue. METHODS: Relevant manuscripts were searched electronically through Scopus, MEDLINE/PubMed, and Cochrane Library databases until 1 November 2022. RESULTS: After analyzing the available literature, 31 articles regarding tactile sensors and interfaces, sensorized tools, haptic technologies, and integrated platforms in oral and maxillofacial surgery have been included. Moreover, a quality rating is provided for each article following appropriate evaluation metrics. DISCUSSION: Many efforts have been made to overcome the technological limits of computed assistant diagnosis, surgery, and teaching. Nonetheless, a research gap is evident between dental/maxillofacial surgery and other specialties such as endovascular, laparoscopic, and microsurgery; especially for what concerns electrical and optical-based sensors for instrumented tools and sensorized tools for contact forces detection. The application of existing technologies is mainly focused on digital simulation purposes, and the integration into Computer Assisted Surgery (CAS) is far from being widely actuated. Virtual reality, increasingly adopted in various fields of surgery (e.g., sino-nasal, traumatology, implantology) showed interesting results and has the potential to revolutionize teaching and learning. A major concern regarding the actual state of the art is the absence of randomized control trials and the prevalence of case reports, retrospective cohorts, and experimental studies. Nonetheless, as the research is fast growing, we can expect to see many developments be incorporated into maxillofacial surgery practice, after adequate evaluation by the scientific community.

14.
Clin Neurophysiol ; 144: 98-114, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335795

RESUMO

OBJECTIVE: Disorders of consciousness (DoC) are acquired conditions of severely altered consciousness. Electroencephalography (EEG)-derived biomarkers have been studied as clinical predictors of consciousness recovery. Therefore, this study aimed to systematically review the methods, features, and models used to derive prognostic EEG markers in patients with DoC in a rehabilitation setting. METHODS: We conducted a systematic literature search of EEG-based strategies for consciousness recovery prognosis in five electronic databases. RESULTS: The search resulted in 2964 papers. After screening, 15 studies were included in the review. Our analyses revealed that simpler experimental settings and similar filtering cut-off frequencies are preferred. The results of studies were categorised by extracting qualitative and quantitative features. The quantitative features were further classified into evoked/event-related potentials, spectral measures, entropy measures, and graph-theory measures. Despite the variety of methods, features from all categories, including qualitative ones, exhibited significant correlations with DoC prognosis. Moreover, no agreement was found on the optimal set of EEG-based features for the multivariate prognosis of patients with DoC, which limits the computational methods applied for outcome prediction and correlation analysis to classical ones. Nevertheless, alpha power, reactivity, and higher complexity metrics were often found to be predictive of consciousness recovery. CONCLUSIONS: This study's findings confirm the essential role of qualitative EEG and suggest an important role for quantitative EEG. Their joint use could compensate for their reciprocal limitations. SIGNIFICANCE: This study emphasises the need for further efforts toward guidelines on standardised EEG analysis pipeline, given the already proven role of EEG markers in the recovery prognosis of patients with DoC.


Assuntos
Transtornos da Consciência , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico , Eletroencefalografia/métodos , Prognóstico , Potenciais Evocados
15.
Artif Intell Med ; 130: 102328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35809967

RESUMO

The continuous monitoring of an individual's breathing can be an instrument for the assessment and enhancement of human wellness. Specific respiratory features are unique markers of the deterioration of a health condition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence, smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the respiratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different conventional machine learning approaches were implemented as well to ultimately compare the results. The meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy, even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231 ± 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly, being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to 0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures proved the potential of such approach. These findings lay the foundation for the implementation of reliable custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related applications.


Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Aprendizado de Máquina , Respiração
16.
Sensors (Basel) ; 11(6): 5596-615, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163915

RESUMO

The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.


Assuntos
Biomimética , Técnicas Biossensoriais/métodos , Dedos/fisiologia , Tato , Algoritmos , Anisotropia , Dermatoglifia , Análise de Fourier , Humanos , Mecanorreceptores/fisiologia , Modelos Estatísticos , Pressão , Reprodutibilidade dos Testes , Robótica , Fenômenos Fisiológicos da Pele , Propriedades de Superfície , Fatores de Tempo , Percepção do Tato , Interface Usuário-Computador
17.
Soft Robot ; 7(4): 409-420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31880499

RESUMO

This study addresses a design and calibration methodology based on numerical finite element method (FEM) modeling for the development of a soft tactile sensor able to simultaneously solve the magnitude and the application location of a normal load exerted onto its surface. The sensor entails the integration of a Bragg grating fiber optic sensor in a Dragon Skin 10 polymer brick (110 mm length, 24 mm width). The soft polymer mediates the transmission of the applied load to the buried fiber Bragg gratings (FBGs), and we also investigated the effect of sensor thickness on receptive field and sensitivity, both with the developed model and experimentally. Force-controlled indentations of the sensor (up to 2.5 N) were carried out through a cylindrical probe applied along the direction of the optical fiber (over an ∼90 mm span in length). A finite element model of the sensor was built and experimentally validated for 1 and 6 mm thicknesses of the soft polymeric encapsulation material, considering that the latter thickness resulted from numerical simulations as leading to optimal cross talk and sensitivity, given the chosen soft material. The FEM model was also used to train a neural network so as to obtain the inverse sensor function. Using four FBG transducers embedded in the 6-mm-thick soft polymer, the proposed machine learning approach managed to accurately detect both load magnitude (R = 0.97) and location (R = 0.99) over the whole experimental range. The proposed system could be used for developing tactile sensors that can be effectively used for a broad range of applications.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Tecnologia de Fibra Óptica/métodos , Aprendizado de Máquina , Fenômenos Mecânicos , Polímeros
18.
Nanomaterials (Basel) ; 10(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438635

RESUMO

Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. In this study, a seedless hydrothermal growth of ZnO nanorods was carried out on Au-coated Si and polyimide substrates. The effects of both the Au morphology and the growth temperature on the characteristics of the nanorods were investigated, finding that smaller Au grains produced tilted rods, while larger grains provided vertical rods. Highly dense and high-aspect-ratio nanorods with hexagonal prismatic shape were obtained at 75 °C and 85 °C, while pyramid-like rods were grown when the temperature was set to 95 °C. Finite-element simulations demonstrated that prismatic rods produce higher voltage responses than the pyramid-shaped ones. A tactile sensor, with an active area of 1 cm2, was fabricated on flexible polyimide substrate and embedding the nanorods forest in a polydimethylsiloxane matrix as a separation layer between the bottom and the top Au electrodes. The prototype showed clear responses upon applied loads of 2-4 N and vibrations over frequencies in the range of 20-800 Hz.

19.
IEEE Trans Haptics ; 13(1): 204-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012023

RESUMO

Notable advancements have been achieved in providing amputees with sensation through invasive and non-invasive haptic feedback systems such as mechano-, vibro-, electro-tactile and hybrid systems. Purely mechanical-driven feedback approaches, however, have been little explored. In this paper, we now created a haptic feedback system that does not require any external power source (such as batteries) or other electronic components (see Fig. 1 ). The system is low-cost, lightweight, adaptable and robust against external impact (such as water). Hence, it will be sustainable in many aspects. We have made use of latest multi-material 3D printing technology (Stratasys Objet500 Connex3) being able to fabricate a soft sensor and a mechano-tactile feedback actuator made of a rubber (TangoBlack Plus) and plastic (VeroClear) material. When forces are applied to the fingertip sensor, fluidic pressure inside the system acts on the membrane of the feedback actuator resulting in mechano-tactile sensation. Our [Formula: see text] feedback actuator is able to transmit a force range between 0.2 N (the median touch threshold) and 2.1 N (the maximum force transmitted by the feedback actuator at a 3 mm indentation) corresponding to force range exerted to the fingertip sensor of 1.2-18.49 N.


Assuntos
Retroalimentação Sensorial , Desenho de Prótese/instrumentação , Desenho de Prótese/métodos , Percepção do Tato , Tato , Adulto , Feminino , Dedos/fisiologia , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Masculino , Limiar Sensorial , Adulto Jovem
20.
Sensors (Basel) ; 9(5): 3161-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22412304

RESUMO

A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm(2), similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA