Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 52(2): 276-285, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854138

RESUMO

BACKGROUND: Quantifying major allergens is essential for evaluating the quality and efficacy of allergenic extracts. They are usually measured in non-polymerized extracts using immunoassays. However, the direct measurement of allergens in allergoids is currently not supported. This study set out to develop a method for quantifying Bet v 1 in polymerized birch extracts using mass spectrometry-based targeted analysis. METHODS: Three isotopically labelled peptide sequences of Bet v 1 were synthetized and used as internal standards for the development of a mass spectrometry-based targeted analysis. The calibration curves of the three peptides to assess the linearity and limit of detection, as well as reverse calibration curves with a constant amount of sample, were constructed. The Bet v 1 content was determined and measured in 18 batches of depigmented (native extracts purified by a mild acid treatment) and depigmented-polymerized extracts. RESULTS: Bet v 1 isoforms were identified in both type of extracts by mass spectrometry. According to mass spectrometry-targeted analysis depigmented and depigmented-polymerized extracts exhibited mean values of 70.5 and 73.5 µg Bet v 1/mg of lyophilized extract, respectively. A statistically significant correlation between the allergen content of both extracts was identified. Statistically significant differences were observed when the Bet v 1 content in non-polymerized extracts was measured via mass spectrometry (70.5 ± 11.6 µg/mg) or immunoassay (83.7 ± 19.8 µg/mg). CONCLUSIONS: These results represent the first direct quantification of Bet v 1 in allergoids using mass spectrometry-based targeted analysis. The proposed method demonstrates robustness and reliability and constitutes a promising alternative for detailed characterization of polymerized allergenic extracts.


Assuntos
Antígenos de Plantas , Betula , Alérgenos , Humanos , Espectrometria de Massas , Extratos Vegetais , Proteínas de Plantas , Pólen , Reprodutibilidade dos Testes
2.
J Proteomics ; 251: 104409, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34758407

RESUMO

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Assuntos
Proteoma , Proteômica , Laboratórios , Fosfoproteínas/análise , Fosforilação , Proteoma/análise , Proteômica/métodos , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA