Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 86(6): 962-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433517

RESUMO

Leukoencephalopathies comprise a broad spectrum of disorders, but the genetic background of adult leukoencephalopathies has rarely been assessed. In this study, we analyzed 101 Japanese patients with genetically unresolved adult leukoencephalopathy using whole-exome sequencing and repeat-primed polymerase chain reaction for detecting GGC expansion in NOTCH2NLC. NOTCH2NLC was recently identified as the cause of neuronal intranuclear inclusion disease. We found 12 patients with GGC expansion in NOTCH2NLC as the most frequent cause of adult leukoencephalopathy followed by NOTCH3 variants in our cohort. Furthermore, we found 1 case with de novo GGC expansion, which might explain the underlying pathogenesis of sporadic cases. ANN NEUROL 2019;86:962-968.


Assuntos
Variação Genética/genética , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Receptor Notch2/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Cell Death Discov ; 9(1): 454, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097540

RESUMO

Nogo-Nogo receptor 1 (NgR1) signaling is significantly implicated in neurodegeneration in amyotrophic lateral sclerosis (ALS). We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of NgR1 that prevents all myelin-associated inhibitors (MAIs), including Nogo, from binding to NgR1. Here we investigated the role of LOTUS in ALS pathogenesis by analyzing G93A-mutated human superoxide dismutase 1 (SOD1) transgenic (Tg) mice, as an ALS model, as well as newly generated LOTUS-overexpressing SOD1 Tg mice. We examined expression profiles of LOTUS and MAIs and compared motor functions and survival periods in these mice. We also investigated motor neuron survival, glial proliferation in the lumbar spinal cord, and neuromuscular junction (NMJ) morphology. We analyzed downstream molecules of NgR1 signaling such as ROCK2, LIMK1, cofilin, and ataxin-2, and also neurotrophins. In addition, we investigated LOTUS protein levels in the ventral horn of ALS patients. We found significantly decreased LOTUS expression in both SOD1 Tg mice and ALS patients. LOTUS overexpression in SOD1 Tg mice increased lifespan and improved motor function, in association with prevention of motor neuron loss, reduced gliosis, increased NMJ innervation, maintenance of cofilin phosphorylation dynamics, decreased levels of ataxin-2, and increased levels of brain-derived neurotrophic factor (BDNF). Reduced LOTUS expression may enhance neurodegeneration in SOD1 Tg mice and ALS patients by activating NgR1 signaling, and in this study LOTUS overexpression significantly ameliorated ALS pathogenesis. LOTUS might serve as a promising therapeutic target for ALS.

3.
Neurosci Res ; 184: 38-46, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940437

RESUMO

Siponimod, which is approved to treat active secondary progressive multiple sclerosis, acts as a functional antagonist of sphingosine-1-phosphate (S1P) receptor 1 (S1P1) and an agonist of S1P5. S1P1 antagonization, which inhibits lymphocyte egress from lymphoid tissues and subsequent infiltration into the central nervous system (CNS), is considered the main therapeutic mechanism of siponimod. In addition, siponimod's direct effects on CNS glial cells are another potential neuroprotective mechanism because siponimod can penetrate the blood-brain barrier and CNS glial cells express S1P receptors. However, it remains uncertain whether siponimod directly affects CNS glial cells. In this study, we investigated siponimod's effects on astrocytes using mouse primary cultures. Siponimod suppressed nuclear factor kappa B activation and pro-inflammatory cytokine production. Using antagonists for S1P1 and S1P5, we found that siponimod partially exerts its anti-inflammatory effects via S1P1, but not via S1P5. Moreover, siponimod also inhibited histone deacetylase, suggesting that siponimod exerts broad anti-inflammatory effects via S1P1 antagonization and histone deacetylase inhibition. Siponimod might suppress disease progression in multiple sclerosis in part via direct inhibition of astroglial CNS neuroinflammation.


Assuntos
Astrócitos , Esclerose Múltipla , Animais , Anti-Inflamatórios/farmacologia , Azetidinas , Compostos de Benzil , Citocinas , Histona Desacetilases/farmacologia , Histona Desacetilases/uso terapêutico , Camundongos , Esclerose Múltipla/tratamento farmacológico , NF-kappa B
4.
Mol Brain ; 14(1): 74, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931083

RESUMO

Neuroinflammation by activated microglia and astrocytes plays a critical role in progression of amyotrophic lateral sclerosis (ALS). Interleukin-19 (IL-19) is a negative-feedback regulator that limits pro-inflammatory responses of microglia in an autocrine and paracrine manner, but it remains unclear how IL-19 contributes to ALS pathogenesis. We investigated the role of IL-19 in ALS using transgenic mice carrying human superoxide dismutase 1 with the G93A mutation (SOD1G93A Tg mice). We generated IL-19-deficient SOD1G93A Tg (IL-19-/-/SOD1G93A Tg) mice by crossing SOD1G93A Tg mice with IL-19-/- mice, and then evaluated disease progression, motor function, survival rate, and pathological and biochemical alternations in the resultant mice. In addition, we assessed the effect of IL-19 on glial cells using primary microglia and astrocyte cultures from the embryonic brains of SOD1G93A Tg mice and IL-19-/-/SOD1G93A Tg mice. Expression of IL-19 in primary microglia and lumbar spinal cord was higher in SOD1G93A Tg mice than in wild-type mice. Unexpectedly, IL-19-/-/SOD1G93A Tg mice exhibited significant improvement of motor function. Ablation of IL-19 in SOD1G93A Tg mice increased expression of both neurotoxic and neuroprotective factors, including tumor necrosis factor-α (TNF-α), IL-1ß, glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor ß1, in lumbar spinal cord. Primary microglia and astrocytes from IL-19-/-/SOD1G93A Tg mice expressed higher levels of TNF-α, resulting in release of GDNF from astrocytes. Inhibition of IL-19 signaling may alleviate ALS symptoms.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Deleção de Genes , Interleucinas/deficiência , Atividade Motora/fisiologia , Animais , Astrócitos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Mediadores da Inflamação/metabolismo , Interleucinas/metabolismo , Longevidade , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Fenótipo , Receptores de Interleucina/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
5.
Intern Med ; 59(22): 2931-2934, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32713909

RESUMO

A 78-year-old woman in complete remission of mass-forming primary central nervous system lymphoma (PCNSL) showed diffuse leukoencephalopathy as well as corticospinal tract lesions with intense gadolinium enhancement on magnetic resonance imaging (MRI). She died 3 months later. In line with the MRI findings, pathological examination revealed dense infiltration of atypical lymphoid cells, consistent with a diagnosis of lymphomatosis cerebri (LC)-type PCNSL. This is the first report of LC in which the corticospinal tracts demonstrated robust contrast enhancement directly corresponding to the neuropathological findings, and it is also a rare instance in which LC presented as a recurrence of typical PCNSL.


Assuntos
Neoplasias Encefálicas , Gadolínio , Idoso , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Tratos Piramidais/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA