Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955134

RESUMO

Invasive ductal carcinoma (IDC) in breast specimens has been detected in the quadrant breast area: (I) upper outer, (II) upper inner, (III) lower inner, and (IV) lower outer areas by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD). The EIT-GRTD consists of two steps which are (1) the optimum frequencyfoptselection and (2) the time constant enhancement of breast imaging reconstruction.foptis characterized by a peak in the majority measurement pair of the relaxation-time distribution functionγ,which indicates the presence of IDC.γrepresents the inverse of conductivity and indicates the response of breast tissues to electrical currents across varying frequencies based on the Voigt circuit model. The EIT-GRTD is quantitatively evaluated by multi-physics simulations using a hemisphere container of mimic breast, consisting of IDC and adipose tissues as normal breast tissue under one condition with known IDC in quadrant breast area II. The simulation results show that EIT-GRTD is able to detect the IDC in four layers atfopt= 30, 170 Hz. EIT-GRTD is applied in the real breast by employed six mastectomy specimens from IDC patients. The placement of the mastectomy specimens in a hemisphere container is an important factor in the success of quadrant breast area reconstruction. In order to perform the evaluation, EIT-GRTD reconstruction images are compared to the CT scan images. The experimental results demonstrate that EIS-GRTD exhibits proficiency in the detection of the IDC in quadrant breast areas while compared qualitatively to CT scan images.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Impedância Elétrica , Tomografia , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Tomografia/métodos , Carcinoma Ductal de Mama/diagnóstico por imagem , Distribuição Normal , Mama/diagnóstico por imagem , Simulação por Computador , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
Biomed Phys Eng Express ; 10(6)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39260386

RESUMO

Breast cancer detection and differentiation of breast tissues are critical for accurate diagnosis and treatment planning. This study addresses the challenge of distinguishing between invasive ductal carcinoma (IDC), normal glandular breast tissues (nGBT), and adipose tissue using electrical impedance spectroscopy combined with Gaussian relaxation-time distribution (EIS-GRTD). The primary objective is to investigate the relaxation-time characteristics of these tissues and their potential to differentiate between normal and abnormal breast tissues. We applied a single-point EIS-GRTD measurement to ten mastectomy specimens across a frequency rangef= 4 Hz to 5 MHz. The method calculates the differential ratio of the relaxation-time distribution functionΔγbetween IDC and nGBT, which is denoted byΔγIDC-nGBT,andΔγbetween IDC and adipose tissues, which is denoted byΔγIDC-adipose.As a result, the differential ratio ofΔγbetween IDC and nGBTΔγIDC-nGBTis 0.36, and between IDC and adiposeΔγIDC-adiposeis 0.27, which included in theα-dispersion atτpeak1=0.033±0.001s.In all specimens, the relaxation-time distribution functionγof IDCγIDCis higher, and there is no intersection withγof nGBTγnGBTand adiposeγadipose.The difference inγsuggests potential variations in relaxation properties at the molecular or structural level within each breast tissue that contribute to the overall relaxation response. The average mean percentage errorδfor IDC, nGBT, and adipose tissues are 5.90%, 6.33%, and 8.07%, respectively, demonstrating the model's accuracy and reliability. This study provides novel insights into the use of relaxation-time characteristic for differentiating breast tissue types, offering potential advancements in diagnosis methods. Future research will focus on correlating EIS-GRTD finding with pathological results from the same test sites to further validate the method's efficacy.


Assuntos
Tecido Adiposo , Neoplasias da Mama , Carcinoma Ductal de Mama , Espectroscopia Dielétrica , Humanos , Espectroscopia Dielétrica/métodos , Feminino , Carcinoma Ductal de Mama/patologia , Distribuição Normal , Mama/diagnóstico por imagem , Impedância Elétrica , Mastectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA