Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Chem Rev ; 123(23): 12595-12756, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38011110

RESUMO

Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.

2.
Small ; 20(6): e2306175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771173

RESUMO

A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.

3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911759

RESUMO

Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.


Assuntos
Parede Celular/química , Commelinaceae/química , Frutas/química , Parede Celular/ultraestrutura , Celulose/química , Cor , Módulo de Elasticidade , Microfibrilas/química , Polissacarídeos/química
4.
New Phytol ; 237(2): 643-655, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229924

RESUMO

Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including in Viburnum tinus where the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genus Viburnum. We obtained fresh and herbarium fruit material from 30 Viburnum species spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance in Viburnum dentatum, and describe the evolution of cell wall architecture across Viburnum. We identify at least two (possibly three) origins of blue fruit color in Viburnum in species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light. Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.


Assuntos
Adoxaceae , Viburnum , Animais , Frutas , Cor , Lipídeos/análise
5.
Angew Chem Int Ed Engl ; 62(47): e202310357, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823670

RESUMO

Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.


Assuntos
Celulose , Oligossacarídeos , Celulose/química , Oligossacarídeos/química , Peptídeos/química , Hidrogéis/química
6.
J Am Chem Soc ; 144(27): 12469-12475, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35765970

RESUMO

Cellulose is a polysaccharide that displays chirality across different scales, from the molecular to the supramolecular level. This feature has been exploited to generate chiral materials. To date, the mechanism of chirality transfer from the molecular level to higher-order assemblies has remained elusive, partially due to the heterogeneity of cellulose samples obtained via top-down approaches. Here, we present a bottom-up approach that uses well-defined cellulose oligomers as tools to understand the transfer of chirality from the single oligomer to supramolecular assemblies beyond the single cellulose crystal. Synthetic cellulose oligomers with defined sequences self-assembled into thin micrometer-sized platelets with controllable thicknesses. These platelets further assembled into bundles displaying intrinsic chiral features, directly correlated to the monosaccharide chirality. Altering the stereochemistry of the oligomer termini impacted the chirality of the self-assembled bundles and thus allowed for the manipulation of the cellulose assemblies at the molecular level. The molecular description of cellulose assemblies and their chirality will improve our ability to control and tune cellulose materials. The bottom-up approach could be expanded to other polysaccharides whose supramolecular chirality is less understood.


Assuntos
Celulose , Celulose/química , Estereoisomerismo
7.
New Phytol ; 235(3): 898-906, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590489

RESUMO

The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits of Lantana strigocamara and compare it with a similar structure in Viburnum tinus fruits. We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure in L. strigocamara. We also examine the development of the structure during maturation. We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets of c.105 nm that form a plate-like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers. Lantana strigocamara is the second origin of a lipid-based photonic structure, convergently evolved with the structure in Viburnum tinus. Chemical differences between the lipids in L. strigocamara and those of V. tinus suggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.


Assuntos
Lantana , Viburnum , Cor , Frutas/química , Lantana/química , Lipídeos/análise , Viburnum/química
8.
Chemistry ; 27(52): 13139-13143, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34251709

RESUMO

The molecular level description of carbohydrate assemblies is hampered by their structural complexity and the lack of suitable analytical methods. Here, we employed systematic chemical modifications to identify key non-covalent interactions that triggered the supramolecular assembly of a disaccharide model. While some modifications disrupted the supramolecular organization, others were tolerated, delivering important information on the aggregation process. The screening identified new geometries, including nanotubes, and twisted ribbons that were characterized with electron tomography and electron diffraction (ED) methods. This work demonstrates that the combination of synthetic chemistry and ED methods is a powerful tool to draw correlations between the molecular structure and the nanoscale architecture of carbohydrate assemblies.


Assuntos
Carboidratos , Nanotubos , Estrutura Molecular
10.
Biomacromolecules ; 22(2): 898-906, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33410657

RESUMO

A new type of polysaccharide (hemicellulose) nanocrystal, bearing the shape of an anisotropic nanoflake, emerged from a dimethyl sulfoxide (DMSO) dispersion of wood-based xylan through heat-induced crystallization. The dimensions of these xylan nanocrystals were controlled by the crystallization conditions. Sharp signals in solid-state NMR indicated a well-ordered crystal structure. The unit cell is constituted of two asymmetric xylose residues, and DMSO molecules resided in a host-guest type of arrangement with more than one local environment. This corroborates with the identical 1H NMR relaxation time between DMSO and xylan, indicative of intimate mixing of the two at the tens of nanometer length scale. X-ray and electron diffraction indicated a 2-fold helical helix along the chain in a monoclinic unit cell with an antiparallel arrangement, with chains placed on the 2-fold helix axes: at the corner and at the center. The 2-fold helical structure is unique for xylan for which only a 3-fold helical form has been reported. The DMSO molecules participated in the crystallization, and they were shown to be vital in stabilizing the crystalline structure. The manipulation of temperature, concentration, and incubation time of the xylan/DMSO dispersion provided pathways for the crystallization to form size-adjustable nanocrystals. As 20-30% of biomass consists of hemicelluloses, this work will serve as a starting point to understand the controlled assembly of hemicelluloses to discover their full application potential.


Assuntos
Dimetil Sulfóxido , Nanopartículas , Cristalização , Temperatura , Xilanos
11.
Biomacromolecules ; 22(5): 1901-1909, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797889

RESUMO

A dielectric medium containing noncentrosymmetric domains can exhibit piezoelectric and second-harmonic generation (SHG) responses when an electric field is applied. Since many crystalline biopolymers have noncentrosymmetric structures, there has been a great deal of interest in exploiting their piezoelectric and SHG responses for electromechanical and electro-optic devices, especially owing to their advantages such as biocompatibility and low density. However, exact mechanisms or origins of such polarization responses of crystalline biopolymers remain elusive due to the convolution of responses from multiple domains with varying degrees of structural disorder or difficulty of ensuring the unidirectional alignment of noncentrosymmetric domains. In this study, we investigate the polarization responses of a noncentrosymmetric crystalline biopolymer, namely, unidirectionally aligned ß-chitin crystals interspersed in the amorphous protein matrix, which can be obtained naturally from tubeworm Lamellibrachia satsuma (LS) tube. The mechanisms governing polarization responses in different dynamic regimes covering optical (>1013 Hz), acoustic/ultrasonic (103-105 Hz), and low (10-2-102 Hz) frequencies are explained. Relationships between the polarization responses dominant in different frequencies are addressed. Also, electromechanical coupling responses, including piezoelectricity of the LS tube, are quantitatively discussed. The findings of this study can be applicable to other noncentrosymmetric crystalline biopolymers, elucidating their polarization responses.


Assuntos
Quitina , Eletricidade
12.
Bioorg Med Chem ; 52: 116496, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808404

RESUMO

In subjects with type 2 diabetes mellitus (T2DM), pancreatic ß-cell mass decreases; however, it is unknown to what extent this decrease contributes to the pathophysiology of T2DM. Therefore, the development of a method for noninvasive detection of ß-cell mass is underway. We previously reported that glucagon-like peptide-1 receptor (GLP-1R) is a promising target molecule for ß-cell imaging. In this study, we attempted to develop a probe targeting GLP-1R for ß-cell imaging using single-photon emission computed tomography (SPECT). For this purpose, we selected exendin-4 as the lead compound and radiolabeled lysine at residue 12 in exendin-4 or additional lysine at the C-terminus using [123I]iodobenzoylation. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Biodistribution study was performed in normal ddY mice. Ex vivo autoradiography was performed in transgenic mice expressing green fluorescent protein under control of the mouse insulin I gene promoter. Additionally, SPECT imaging was performed in normal ddY mice. The affinity of novel synthesized derivatives toward pancreatic ß-cells was not affected by iodobenzoylation. The derivatives accumulated in the pancreas after intravenous administration specifically via GLP-1R expressed on the pancreatic ß-cells. Extremely high signal-to-noise ratio was observed during evaluation of biodistribution of [123I]IB12-Ex4. SPECT images using normal mice showed that [123I]IB12-Ex4 accumulated in the pancreas with high contrast between the pancreas and background. These results indicate that [123I]IB12-Ex4 for SPECT is useful for clinical applications because of its preferable kinetics in vivo.


Assuntos
Desenvolvimento de Medicamentos , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Compostos Radiofarmacêuticos/farmacologia , Animais , Relação Dose-Resposta a Droga , Exenatida/síntese química , Exenatida/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Radioisótopos do Iodo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
13.
Soft Matter ; 16(15): 3628-3641, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32222755

RESUMO

Dynamic covalent hydrogels crosslinked by boronate ester bonds are promising materials for biomedical applications. However, little is known about the impact of the crosslink structure on the mechanical behaviour of the resulting network. Herein, we provide a mechanistic study on boronate ester crosslinking upon mixing hyaluronic acid (HA) backbones modified, on the one hand, with two different arylboronic acids, and on the other hand, with three different saccharide units. Combining rheology, NMR and computational analysis, we demonstrate that carefully selecting the arylboronic-polyol couple allows for tuning the thermodynamics and molecular exchange kinetics of the boronate ester bond, thereby controlling the rheological properties of the gel. In particular, we report the formation of "strong" gels (i.e. featuring slow relaxation dynamics) through the formation of original complex structures (tridentate or bidentate complexes). These findings offer new prospects for the rational design of hydrogel scaffolds with tailored mechanical response.


Assuntos
Ácidos Borônicos/química , Ácido Hialurônico/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Reologia
14.
Int J Biometeorol ; 64(5): 755-764, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31974799

RESUMO

We developed a mathematical model to estimate the increase in firefighters' core body temperature from energy expenditure (EE) measured by accelerometry to prevent heat illness during firefighting. Wearing firefighter personal protective equipment, seven male subjects aged 23-42 years underwent a graded walking test on a treadmill while esophageal temperature (Tes) and skin temperature were measured with thermocouples and EE was measured with a tri-axial accelerometer. To estimate the increase in Tes from EE, we proposed a mathematical model composed of the heat capacity of active muscles (C1, kcal·°C-1), the heat capacity of the sum of resting muscles and skin (C2), the resistance to heat flux from C1 to C2 (R1, °C·min·kcal-1), and the resistance from C2 to the skin surface (R2). We determined the parameters while minimizing the differences between the estimated and measured changes in Tes profiles during graded walking. We found that C1 and C2 in individuals were highly correlated with their body weight (kg) and body surface area (m2), respectively, whereas R1 and R2 were similar across subjects. When the profiles of measured Tes (y) and estimated Tes (x) were pooled in all subjects, they were almost identical and were described by a regression equation without an intercept, y = 0.96x (r = 0.96, P < 0.0001), with a mean difference of - 0.01 ± 0.12 °C (mean ± SD) ranging from - 0.18 to 1.56 °C of the increase in Tes by Bland-Altman analysis. Thus, the model can be used for firefighters to prevent heat illness during firefighting.


Assuntos
Bombeiros , Adulto , Temperatura Corporal , Temperatura Alta , Humanos , Masculino , Modelos Teóricos , Temperatura Cutânea , Temperatura , Adulto Jovem
15.
Int J Urol ; 27(1): 60-66, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31587417

RESUMO

OBJECTIVES: The aim of the present study was to report on our early experience with hydrogel spacer (SpaceOAR) placement in combination with iodine-125 low-dose-rate brachytherapy for prostate cancer. METHODS: From April 2018, SpaceOAR hydrogel spacer was placed in 100 consecutive patients undergoing iodine-125 low-dose-rate brachytherapy. Complications and the status of the placement were evaluated. Deformation of the prostate by the spacer was examined measuring prostate diameters and evaluating the change from preoperative status. The position of the prostate was similarly examined by evaluating the change in distance between the pubic symphysis and the prostate. Post-plan dosimetric data were compared with 200 patients treated without a spacer. RESULTS: No complications were found during either the intraoperative or perioperative periods. The mean displacement distance of 11.64 mm was created, the mean value before spacer placement was 0.28 mm (P < 0.0001). The change of the prostate diameters showed a positive increase in all directions, with no significant negative change in any one direction. Regarding the change in distance between pubic symphysis and the prostate, no significant shortening trend was observed between the two groups (P = 0.14). Whereas the dosimetric parameters showed means of 0.001 and 0.026 cc for RV150 and RV100 in the spacer group, they were 0.025 and 0.318 cc, respectively, in the non-spacer group, showing a significant decrease in both parameters (P < 0.001). CONCLUSIONS: Prostate deformation secondary to hydrogel placement might adversely affect dosimetric parameters in patients undergoing low-dose-rate brachytherapy. However, a significant reduction in the rectal dose can be adopted without adversely affecting the other parameters related to treatment outcome.


Assuntos
Braquiterapia/métodos , Hidrogéis/administração & dosagem , Radioisótopos do Iodo/administração & dosagem , Neoplasias da Próstata/radioterapia , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Estudos Retrospectivos
16.
Angew Chem Int Ed Engl ; 59(50): 22577-22583, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32881205

RESUMO

Hierarchical carbohydrate architectures serve multiple roles in nature. Hardly any correlations between the carbohydrate chemical structures and the material properties are available due to the lack of standards and suitable analytic techniques. Therefore, designer carbohydrate materials remain highly unexplored, as compared to peptides and nucleic acids. A synthetic D-glucose disaccharide, DD, was chosen as a model to explore carbohydrate materials. Microcrystal electron diffraction (MicroED), optimized for oligosaccharides, revealed that DD assembled into highly crystalline left-handed helical fibers. The supramolecular architecture was correlated to the local crystal organization, allowing for the design of the enantiomeric right-handed fibers, based on the L-glucose disaccharide, LL, or flat lamellae, based on the racemic mixture. Tunable morphologies and mechanical properties suggest the potential of carbohydrate materials for nanotechnology applications.

17.
Biomacromolecules ; 20(7): 2830-2838, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31244020

RESUMO

As with many other biosourced colloids, chitin nanocrystals (ChNCs) can form liquid crystalline phases with chiral nematic ordering. In this work, we demonstrate that it is possible to finely tune the liquid crystalline behavior of aqueous ChNC suspensions finely. Such control was made possible by carefully studying how the hydrolysis conditions and suspension treatments affect the colloidal and self-assembly properties of ChNCs. Specifically, we systematically investigated the effects of duration and acidity of chitin hydrolysis required to extract ChNCs, as well as the effects of the tip sonication energy input, degree of acetylation, pH and ionic strength. Finally, we show that by controlled water evaporation, it is possible to retain and control the helicoidal ordering in dry films, leading to a hierarchical architecture analogous to that found in nature, e.g. in crab shells. We believe that this work serves as a comprehensive insight into ChNC preparation and handling which is required to unlock the full potential of this material in both a scientific and industrial context.


Assuntos
Celulose/química , Quitina/química , Nanopartículas/química , Água/química , Hidrólise , Concentração Osmolar , Suspensões/química
18.
New Phytol ; 219(3): 1124-1133, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29856474

RESUMO

The petals of Eschscholzia californica (California poppy) are robust, pliable and typically coloured intensely orange or yellow owing to the presence of carotenoid pigments; they are also highly reflective at certain angles, producing a silky effect. To understand the mechanisms behind colour enhancement and reflectivity in California poppy, which represents a model species among early-divergent eudicots, we explored the development, ultrastructure, pigment composition and optical properties of the petals using light microscopy and electron microscopy combined with both spectrophotometry and goniometry. The elongated petal epidermal cells each possess a densely thickened prism-like ridge that is composed primarily of cell wall. The surface ridges strongly focus incident light onto the pigments, which are located in plastids at the cell base. Our results indicate that this highly unusual, deeply ridged surface structure not only enhances the deep colour response in this desert species, but also results in strongly angle-dependent 'silky' reflectivity that is anisotropic and mostly directional.


Assuntos
Células Epidérmicas/ultraestrutura , Eschscholzia/citologia , Eschscholzia/ultraestrutura , Flores/citologia , Flores/ultraestrutura , Fenômenos Ópticos , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Pigmentos Biológicos/metabolismo , Temperatura
19.
Bioorg Med Chem ; 26(2): 463-469, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29273416

RESUMO

ß-cell mass (BCM) is known to be decreased in subjects with type-2 diabetes (T2D). Quantitative analysis for BCM would be useful for understanding how T2D progresses and how BCM affects treatment efficacy and for earlier diagnosis of T2D and development of new therapeutic strategies. However, a noninvasive method to measure BCM has not yet been developed. We developed four 18F-labeled exendin(9-39) derivatives for ß-cell imaging by PET: [18F]FB9-Ex(9-39), [18F]FB12-Ex(9-39), [18F]FB27-Ex(9-39), and [18F]FB40-Ex(9-39). Affinity to the glucagon-like peptide-1 receptor (GLP-1R) was evaluated with dispersed islet cells of ddY mice. Uptake of exendin(9-39) derivatives in the pancreas as well as in other organs was evaluated by a biodistribution study. Small-animal PET study was performed after injecting [18F]FB40-Ex(9-39). FB40-Ex(9-39) showed moderate affinity to the GLP-1R. Among all of the derivatives, [18F]FB40-Ex(9-39) resulted in the highest uptake of radioactivity in the pancreas 30 min after injection. Moreover, it showed significantly less radioactivity accumulated in the liver and kidney, resulting in an overall increase in the pancreas-to-organ ratio. In the PET imaging study, pancreas was visualized at 30 min after injection of [18F]FB40-Ex(9-39). [18F]FB40-Ex(9-39) met the basic requirements for an imaging probe for GLP-1R in pancreatic ß-cells. Further enhancement of pancreatic uptake and specific binding to GLP-1R will lead to a clear visualization of pancreatic ß-cells.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Imagem Molecular , Fragmentos de Peptídeos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Relação Dose-Resposta a Droga , Radioisótopos de Flúor , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA