Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(40): 7625-7636, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32913108

RESUMO

Oligodendrocyte (OL) progenitor cells (OPCs) are generated, proliferate, migrate, and differentiate in the developing brain. Although the development of OPCs is prerequisite for normal brain function, the molecular mechanisms regulating their development in the neocortex are not fully understood. Several molecules regulate the tangential distribution of OPCs in the developing neocortex, but the cue molecule(s) that regulate their radial distribution remains unknown. Here, we demonstrate that the secreted glycoprotein Reelin suppresses the proliferation of OPCs and acts as a repellent for their migration in vitro These functions rely on the binding of Reelin to its receptors and on the signal transduction involving the intracellular protein Dab1. In the late embryonic neocortex of mice with attenuated Reelin signaling [i.e., Reelin heterozygote-deficient, Dab1 heterozygote-deficient mutant, or very low-density lipoprotein receptor (VLDLR)-deficient mice], the number of OPCs increased and their distribution shifted toward the superficial layers. In contrast, the number of OPCs decreased and they tended to distribute in the deep layers in the neocortex of mice with abrogated inactivation of Reelin by proteolytic cleavage, namely a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3)-deficient mice and cleavage-resistant Reelin knock-in mice. Both male and female animals were used. These data indicate that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic neocortex and that the regulation of Reelin function by its specific proteolysis is required for the normal development of OPCs.SIGNIFICANCE STATEMENT Here, we report that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic mouse neocortex. Oligodendrocyte (OL) progenitor cells (OPCs) express Reelin signaling molecules and respond to Reelin stimulation. Reelin-Dab1 signaling suppresses the proliferation of OPCs both in vitro and in vivo Reelin repels OPCs in vitro, and the radial distribution of OPCs is altered in mice with either attenuated or augmented Reelin-Dab1 signaling. This is the first report identifying the secreted molecule that plays a role in the radial distribution of OPCs in the late embryonic neocortex. Our results also show that the regulation of Reelin function by its specific proteolysis is important for the normal development of OPCs.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Oligodendroglia/metabolismo , Serina Endopeptidases/metabolismo , Proteínas ADAMTS/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/embriologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Ligação Proteica , Receptores de LDL/metabolismo , Proteína Reelina , Serina Endopeptidases/genética
2.
Mol Cell Neurosci ; 100: 103401, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491533

RESUMO

Reelin plays important roles in regulating neuronal development, modulating synaptic function, and counteracting amyloid ß toxicity. A specific proteolytic cleavage (N-t cleavage) of Reelin abolishes its biological activity. We recently identified ADAMTS-3 (a disintegrin and metalloproteinase with thrombospondin motifs 3) as the major N-t cleavage enzyme in the embryonic and early postnatal brain. The contribution of other proteases, particularly in the postnatal brain, has not been demonstrated in vivo. ADAMTS-2, -3 and -14 share similar domain structures and substrate specificity, raising the possibility that ADAMTS-2 and -14 may cleave Reelin. We found that recombinant ADAMTS-2 protein expressed in cultured cell lines cleaves Reelin at the N-t site as efficiently as ADAMTS-3 while recombinant ADAMTS-14 hardly cleaves Reelin. The disintegrin domain is necessary for the Reelin-cleaving activity of ADAMTS-2 and -3. ADAMTS-2 is expressed in the adult brain at approximately the same level as ADAMTS-3. We generated ADAMTS-2 knockout (KO) mice and found that ADAMTS-2 significantly contributes to the N-t cleavage and inactivation of Reelin in the postnatal cerebral cortex and hippocampus, but much less in the cerebellum. Therefore, it was suggested that ADAMTS-2 can be a therapeutic target for adult brain disorders such as schizophrenia and Alzheimer's disease.


Assuntos
Proteínas ADAMTS/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Proteínas ADAMTS/genética , Animais , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Células HEK293 , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Proteína Reelina
3.
Biol Pharm Bull ; 42(3): 354-356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828067

RESUMO

Reelin is a secreted protein that antagonizes the deposition and toxicity of amyloid ß peptide (Aß). Therefore, augmentation of Reelin activity may ameliorate Alzheimer's disease (AD). We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs 3 (ADAMTS-3) cleaves and inactivates Reelin in the mouse brain. In the present study, we investigated the effect of reducing ADAMTS-3 on deposition of Aß by crossbreeding drug-inducible ADAMTS-3 conditional knock-out (cKO) mice with "next-generation" AD model mice. We found that reducing ADAMTS-3 inhibited deposition of Aß significantly in AppNL-F mice, which produce human wild-type Aß. On the other hand, reducing ADAMTS-3 had no effect in AppNL-G-F mice, which produce the Arctic mutant Aß (E22G) that forms protofibrils more efficiently than does wild-type Aß. Thus, the findings suggest that the administration of an inhibitor against ADAMTS-3 will prevent the progression of AD pathology caused by deposition of wild-type Aß.


Assuntos
Proteínas ADAMTS/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Proteínas ADAMTS/antagonistas & inibidores , Proteínas ADAMTS/genética , Doença de Alzheimer , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
4.
J Neurosci ; 37(12): 3181-3191, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28213441

RESUMO

The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders.SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major contributor of Reelin inactivation in vivo Tau phosphorylation was decreased and dendritic branching and elongation was increased in ADAMTS-3-deficient mice. Therefore, inhibition of ADAMTS-3 upregulates Reelin activity and may be a potential therapeutic strategy for the prevention or treatment of neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease.


Assuntos
Proteínas ADAMTS/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Pró-Colágeno N-Endopeptidase/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Ativação Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Ligação Proteica , Proteína Reelina
5.
Methods Mol Biol ; 2043: 93-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31463905

RESUMO

Reelin is a large secreted protein that is essential for the brain development and function. Reelin is negatively regulated by the specific cleavage by a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3) which is also secreted from neurons. It is likely that there are other proteases that can cleave Reelin. This chapter describes the protocol for expression and handling of recombinant Reelin and ADAMTS-3 proteins to facilitate investigation of these proteins.


Assuntos
Proteínas ADAMTS/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Proteínas do Tecido Nervoso/genética , Pró-Colágeno N-Endopeptidase/genética , Serina Endopeptidases/genética , Proteínas ADAMTS/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/metabolismo , Pró-Colágeno N-Endopeptidase/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo
6.
Methods Mol Biol ; 2043: 105-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31463906

RESUMO

Proteolytic cleavage of the secreted signaling protein Reelin has been suggested to play causative roles in many neuropsychiatric and neurodegenerative disorders. Therefore, characterization of the proteolytic activity against Reelin is important not only for understanding how the brain works but also for the development of novel therapy for these disorders. Notably, ADAMTS family proteases are the primary suspects of Reelin-cleaving proteases under many, though not all, circumstances. Here we describe how to measure the Reelin-cleaving activity of ADAMTS (or of any other protease that may cleave Reelin), how to purify the Reelin-cleaving protease ADAMTS-3 from the culture supernatant of cortical neurons, and how to detect endogenous Reelin protein and its fragments in the brain.


Assuntos
Proteínas ADAMTS/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/química , Córtex Cerebral/citologia , Proteínas da Matriz Extracelular/química , Proteínas do Tecido Nervoso/química , Pró-Colágeno N-Endopeptidase/metabolismo , Serina Endopeptidases/química , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Proteólise , Proteína Reelina
7.
Sci Rep ; 10(1): 4471, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161359

RESUMO

Reelin is a secreted protein that plays versatile roles in neuronal development and function. The strength of Reelin signaling is regulated by proteolytic processing, but its importance in vivo is not yet fully understood. Here, we generated Reelin knock-in (PA-DV KI) mice in which the key cleavage site of Reelin was abolished by mutation. As expected, the cleavage of Reelin was severely abrogated in the cerebral cortex and hippocampus of PA-DV KI mice. The amount of Dab1, whose degradation is induced by Reelin signaling, decreased in these tissues, indicating that the signaling strength of Reelin was augmented. The brains of PA-DV KI mice were largely structurally normal, but unexpectedly, the hippocampal layer was disturbed. This phenotype was ameliorated in hemizygote PA-DV KI mice, indicating that excess Reelin signaling is detrimental to hippocampal layer formation. The neuronal dendrites of PA-DV KI mice had more branches and were elongated compared to wild-type mice. These results present the first direct evidence of the physiological importance of Reelin cleavage.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Animais , Encéfalo/metabolismo , Imunofluorescência , Expressão Gênica , Técnicas de Introdução de Genes , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Proteólise , Proteína Reelina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA