RESUMO
A major impediment to successful cancer treatment is the inability of clinically available drugs to kill drug-resistant cancer cells. We recently identified metabolically stable L-glucosamine-based glycosylated antitumor ether lipids (GAELs) that were cytotoxic to chemotherapy-resistant cancer cells. In the absence of commercially available L-glucosamine, many steps were needed to synthesize the compound and the overall yield was poor. To overcome this limitation, a facile synthetic procedure using commercially available L-sugars including L-rhamnose and L-glucose were developed and the L-GAELs tested for anticancer activity. The most potent analog synthesized, 3-amino-1-O-hexadecyloxy-2R-(O-α-L-rhamnopyranosyl)-sn- glycerol 3, demonstrated a potent antitumor effect against human cancer cell lines derived from breast, prostate, and pancreas. The activity observed was superior to that observed with clinical anticancer agents including cisplatin and chlorambucil. Moreover, like other GAELs, 3 induced cell death by a non-membranolytic caspase-independent pathway.
Assuntos
Antineoplásicos/síntese química , Caspases/metabolismo , Glicerídeos/síntese química , Neoplasias/metabolismo , Ramnose/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicerídeos/química , Glicerídeos/farmacologia , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Células PC-3 , Relação Estrutura-AtividadeRESUMO
1-O-Hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-ß-D-glucopyranosyl)-sn-glycerol (1) was previously reported to show potent in vitro antitumor activity on a range of cancer cell lines derived from breast, pancreas and prostate cancer. This compound was not toxic to mice and was inactive against breast tumor xenografts in mice. This inactivity was attributed to hydrolysis of the glycosidic linkage by glycosidases. Here three N-linked (glycosylamide) analogs 2-4, one triazole-linked analog 5 of 1 as well as two diglycosylated analogs 6 and 7 with different stereochemistry at the C2-position of the glycerol moiety were synthesized and their antitumor activity against breast (JIMT-1, BT-474, MDA-MB-231), pancreas (MiaPaCa2) and prostrate (DU145, PC3) cancer cell lines was determined. The diglycosylated analogs 1-O-hexadecyl-2(R)-, 3-O-di-(2'-amino-2'-deoxy-ß-D-glucopyranosyl)-sn-glycerol (7) and the 1:1 diastereomeric mixture of 1-O-hexadecyl-2(R/S), 3-O-di-(2'-amino-2'-deoxy-ß-D-glucopyranosyl)-sn-glycerol (6) showed the most potent cytotoxic activity at CC50 values of 17.5 µM against PC3 cell lines. The replacement of the O-glycosidic linkage by a glycosylamide or a glycosyltriazole linkage showed little or no activity at highest concentration tested (30 µM), whereas the replacement of the glycerol moiety by triazole resulted in CC50 values in the range of 20 to 30 µM. In conclusion, the replacement of the O-glycosidic linkage by an N-glycosidic linkage or triazole-linkage resulted in about a two to three fold loss in activity, whereas the replacement of the methoxy group on the glycerol backbone by a second glucosamine moiety did not improve the activity. The stereochemistry at the C2-position of the glycero backbone has minimal effect on the anticancer activities of these diglycosylated analogs.
Assuntos
Glucosamina/química , Glicolipídeos/química , Glicolipídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Combinatória , Glicolipídeos/síntese química , Humanos , Relação Estrutura-AtividadeRESUMO
We describe metabolically inert l-glucosamine-based glycosylated antitumor ether lipids (L-GAELs) that retain the cytotoxic effects of the D-GAELs including the ability to kill BT-474 breast cancer stem cells (CSCs). When compared to adriamycin, cisplatin, and the anti-CSC agent salinomycin, L-GAELs display superior activity to kill cancer stem cells (CSCs). Mode of action studies indicate that L-GAELs like the D-GAELs kill cells via an apoptosis-independent mechanism that was not due to membranolytic effects.
Assuntos
Epitélio/metabolismo , Glucosamina/química , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Glicosilação , Humanos , Células-Tronco Neoplásicas/patologia , EstereoisomerismoRESUMO
BACKGROUND: Chemotherapy resistance is one of the major factors contributing to mortality from human epithelial ovarian cancer (EOC). Identifying drugs that can effectively kill chemotherapy-resistant EOC cells would be a major advance in reducing mortality. Glycosylated antitumour ether lipids (GAELs) are synthetic glycolipids that are cytotoxic to a wide range of cancer cells. They appear to induce cancer cell death in an apoptosis-independent manner. METHODS: Herein, the effectiveness of two GAELs, GLN and MO-101, in killing chemotherapy-sensitive and -resistant EOC cells lines and primary cell samples was tested using monolayer, non-adherent aggregate, and non-adherent spheroid cultures. RESULTS: Our results show that EOC cells exhibit a differential sensitivity to the GAELs. Strikingly, both GAELs are capable of inducing EOC cell death in chemotherapy-sensitive and -resistant cells grown as monolayer or non-adherent cultures. Mechanistic studies provide evidence that apoptotic-cell death (caspase activation) contributes to, but is not completely responsible for, GAEL-induced cell killing in the A2780-cp EOC cell line, but not primary EOC cell samples. CONCLUSIONS: Studies using primary EOC cell samples supports previously published work showing a GAEL-induced caspase-independent mechanism of death. GAELs hold promise for development as novel compounds to combat EOC mortality due to chemotherapy resistance.
Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicolipídeos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Pepstatinas/farmacologiaRESUMO
Peptides present an attractive scaffold for the development of new anticancer lead agents due to their accessibility and ease of modification. Synthetic ultrashort cationic lipopeptides, with four amino acids or less conjugated to a fatty acid, were developed to retain the biological activity of longer peptides in a smaller molecular size. Herein, we report the activity of amphiphilic lipotripeptides, lipotripeptoids and lipotetrapeptides against breast (MDA-MB-231, JIMT-1), prostate (DU145) and pancreas (MiaPaCa2) epithelial cancer cell lines. The lipotripeptide C16-KKK-NH2 and lipotetrapeptide C16-PCatPHexPHexPCat-NH2 were identified to possess anticancer activity. The latter lipotetrapeptide possess a short polyproline scaffold consisting of only two L-4R-aminoproline (PCat) and two L-4R-hexyloxyproline (PHex). However, all the prepared lipotripeptoids lack anticancer activity. The amphiphilic C16-PCatPHexPHexPCat-NH2 exhibited similar anticancer potency to the surfactant benzethonium chloride while superior activity was observed in comparison to myristylamine. Mechanistic studies revealed that the peptides do not lyse ovine erythrocytes nor epithelial cancer cells, thus ruling out necrosis as the mechanism of cell death. Surprisingly, the two lipopeptides exhibit different mechanisms of action that result in cancer cell death. The lipotripeptide C16-KKK-NH2 was found to induce caspase-mediated apoptosis while C16-PCatPHexPHexPCat-NH2 kills tumor cells independent of caspases.
Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipopeptídeos/administração & dosagem , Animais , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Lipopeptídeos/química , Masculino , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Ovinos , Relação Estrutura-AtividadeRESUMO
The potent antitumor activity of 1-O-hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-ß-D-glucopyranosyl)-sn-glycerol (1) was previously shown to arise through an apoptosis-independent pathway. Here, a systematic structure-activity study in which the effects of the anomeric linkage, the cationic charge and the glycero moiety on the antitumor activity is described. Eight analogues of 1 were synthesized, and their antitumor activity against breast (JIMT1 and BT549), pancreas (MiaPaCa2) and prostate (DU145, PC3) cancer was determined. 1-O-Hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-α-D-glucopyranosyl)-sn-glycerol (2) consistently displayed the most potent activity against all five cell lines with CC(50) values in the range of 6-10 µM. However, replacement of the O-glycosidic linkage by a thioglycosidic linkage or replacement of the amino group by an azide or guanidino group leads to a threefold or greater decrease in potency. The glycero moiety also contributes to the overall activity of 1 and 2 but its effects are of lesser importance. Investigation into the mode of action of this class of compounds revealed that, in agreement with previous findings, the cytotoxic effects arise through induction of large acid vacuoles.
Assuntos
Antineoplásicos/química , Glucosamina/química , Glicolipídeos/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Proteína 5 Relacionada à Autofagia , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicolipídeos/síntese química , Glicolipídeos/toxicidade , Humanos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Relação Estrutura-AtividadeRESUMO
Decoctions of the aerial parts of either Bupleurum rigidum or B. fruticescens are equally used in certain parts of Spain for the treatment of topical and musculoskeletal inflammations. In the present paper, their phytochemical profile and pharmacological value has been compared. After chromatographic and spectral analyses we could establish the presence of rutin and absence of chlorogenic acid in B. fruticescens, whilst the contrary applies to B. rigidum, providing a means to chemically differentiate extracts and dry materials from the two species. Their free radical scavenging and antiperoxidative activities were similar, with B. fruticescens being more active overall. The infusions of both Bupleurum species also showed similar anti-inflammatory activity when tested by NF-kappaB assay (40% and 42% at 60 microg x mL(-1)), as well as in a hexosaminidase exocytosis assay (30% at 50 microg x mL(-1)). Antimigratory effects on rat melanoma B16F10 showed significant activity for both infusions, with B. rigidum twice as potent as B. fruticescens, the activity of the latter not being fully explained by its content of rutin. Taking all these results together, we can conclude that, in the selected experimental models, there exist an in vitro bioequivalence of the infusions from both species, which is in agreement with the majority of ethnopharmacological reports.