Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503389

RESUMO

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Assuntos
Carpóforos , Meiose , Pleurotus , Esporos Fúngicos , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Meiose/genética , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Genes Essenciais/genética , Transcriptoma/genética
2.
Foods ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998573

RESUMO

The oyster mushroom is cultivated globally, renowned for its unique texture and umami flavor, as well as its rich content of nutrients and functional ingredients. This study aims to identify the descriptive sensory characteristics, assess the consumer acceptability of new superior lines and cultivars of yellow oyster mushrooms, in addition to exploring the relationship between these descriptive characteristics and consumer acceptability. Statistical analyses were performed using one-way analysis of variance (ANOVA), principal component analysis (PCA), and partial least squares regression (PLSR). Twenty attributes were delineated, including three related to appearance/color (gray, yellow, and white), four associated with the smell/odor of fresh mushroom (oyster mushroom, woody, fishy, and seafood smells), three pertaining to the smell/odor of cooked mushrooms (mushroom, umami, and savory smells), four describing flavor/taste (sweet, salty, umami, and savory tastes), and five for texture/mouthfeel (chewy, smooth, hard, squishy, and slippery textures). Consumer acceptability tests involved 100 consumers who evaluated overall liking, appearance, overall taste, sweetness, texture, savory taste, MSG taste, smell, color, purchase intention, and recommendation. The general oyster mushroom (548 samples) scored highest in acceptability. Seven attributes, namely fresh mushroom smell, seafood smell (fresh), fishy smell (fresh), umami smell (cooked), nutty smell (cooked), salty taste, and MSG taste with the exception of appearance showed significant differences among samples (p < 0.001). The three yellow oyster mushroom samples were strongly associated with attributes like hardness, softness (texture), sweet taste (745 samples), MSG taste, salty taste, squishy texture, and fishy smell (483 and 629 samples). The development of sensory lexicons and increasing consumer acceptance of new superior lines and cultivars of yellow oyster mushroom will likely enhance sensory quality and expand the consumer market, aligning with consumer needs and preferences.

3.
J Fungi (Basel) ; 10(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921359

RESUMO

Light plays vital roles in fungal growth, development, reproduction, and pigmentation. In Flammulina velutipes, the color of the fruiting body exhibits distinct changes in response to light; however, the underlying molecular mechanisms remain unknown. Therefore, in this study, we aimed to analyze the F. velutipes transcriptome under red, green, and blue light-emitting diode (LED) lights to identify the key genes affecting the light response and fruiting body color in this fungus. Additionally, we conducted protein-protein interaction (PPI) network analysis of the previously reported fruiting body color-related gene, Fvpal1, to identify the hub genes. Phenotypic analysis revealed that fruiting bodies exposed to green and blue lights were darker than those untreated or exposed to red light, with the color intensifying more after 48 h of exposure to blue light compared to that after 24 h of exposure. Differentially expressed gene (DEG) analyses of all light treatments for 24 h revealed that the numbers of DEGs were 17, 74, and 257 under red, green, and blue lights, respectively. Subsequently, functional enrichment analysis was conducted of the DEGs identified under green and blue lights, which influenced the color of F. velutipes. In total, 103 of 168 downregulated DEGs under blue and green lights were included in the enrichment analysis. Among the DEGs enriched under both green and blue light treatments, four genes were related to monooxygenases, with three genes annotated as cytochrome P450s that are crucial for various metabolic processes in fungi. PPI network analysis of Fvpal1 revealed associations with 11 genes, among which the expression of one gene, pyridoxal-dependent decarboxylase, was upregulated in F. velutipes exposed to blue light. These findings contribute to our understanding of the molecular mechanisms involved in the fruiting body color changes in response to light and offer potential molecular markers for further exploration of light-mediated regulatory pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA