Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 225: 115582, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858302

RESUMO

Within circulating fluidized bed (CFB) processes, gas and solid behaviors are mutually affected by operating conditions. Therefore, understanding the behaviors of gas and solid materials inside CFB processes is required for designing and operating those processes. In addition, in order to minimize the environmental impact, modeling to reduce pollutants such as SOx emitted from those processes is essential, and simulation reproduction is necessary for optimization, but little is known. In this study, the gas and solid behaviors in a pilot-scale circulating fluidized bed combustor were investigated by using computational particle fluid dynamics (CPFD) numerical simulation based on the multiphase particle-in-cell (MP-PIC) method under oxy-fuel combustion conditions. In particular, the combustion and in-situ desulfurization reactions simultaneously were considered in this CPFD model. Effect of fluidization number (ULS/Umf) was investigated through the comparison of particle circulation rates with regards to the loop seal flux plane and bed height in the standpipe. In addition, the effects of parameters (temperature, Ca/S molar ratio, and particle size distribution), sensitive indicators for the desulfurization efficiency of limestone, were confirmed. Based on the cycle of the thermodynamic equilibrium curve of limestone, it is suggested that direct and indirect desulfurization occur simultaneously under different operating conditions in CFB, creating an environment in which various reactions other than desulfurization can occur. Addition of the reaction equations (i.e., porosity, diffusion) to the established simple model minimizes uncertainty in the results. Furthermore, the model can be utilized to optimize in-situ desulfurization under oxy-CFB operating conditions.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Porosidade , Poluentes Atmosféricos/análise , Carbonato de Cálcio , Temperatura
2.
Opt Express ; 14(14): 6564-71, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19516834

RESUMO

We studied microcavity organic light-emitting devices with a microlens system. A microcavity for organic light-emitting devices (OLED) was fabricated by stacks of SiO(2) and SiN(x) layers and a metal cathode together with the microlens array. Electroluminescence of the devices showed that color variation under the viewing angle due to the microcavity is suppressed remarkably by microlens arrays, which makes the use of devices acceptable in many applications. It was also demonstrated that the external out-coupling factor of the devise increases by a factor of ~1.8 with wide viewing angles compared to conventional OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA