Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Med Syst ; 43(6): 157, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028562

RESUMO

Celiac disease is a genetically determined disorder of the small intestine, occurring due to an immune response to ingested gluten-containing food. The resulting damage to the small intestinal mucosa hampers nutrient absorption, and is characterized by diarrhea, abdominal pain, and a variety of extra-intestinal manifestations. Invasive and costly methods such as endoscopic biopsy are currently used to diagnose celiac disease. Detection of the disease by histopathologic analysis of biopsies can be challenging due to suboptimal sampling. Video capsule images were obtained from celiac patients and controls for comparison and classification. This study exploits the use of DAISY descriptors to project two-dimensional images onto one-dimensional vectors. Shannon entropy is then used to extract features, after which a particle swarm optimization algorithm coupled with normalization is employed to select the 30 best features for classification. Statistical measures of this paradigm were tabulated. The accuracy, positive predictive value, sensitivity and specificity obtained in distinguishing celiac versus control video capsule images were 89.82%, 89.17%, 94.35% and 83.20% respectively, using the 10-fold cross-validation technique. When employing manual methods rather than the automated means described in this study, technical limitations and inconclusive results may hamper diagnosis. Our findings suggest that the computer-aided detection system presented herein can render diagnostic information, and thus may provide clinicians with an important tool to validate a diagnosis of celiac disease.


Assuntos
Endoscopia por Cápsula/métodos , Doença Celíaca/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Endoscopia por Cápsula/normas , Doença Celíaca/diagnóstico por imagem , Doença Celíaca/patologia , Humanos , Mucosa Intestinal/patologia , Sensibilidade e Especificidade
2.
Cogn Neurodyn ; 18(4): 1609-1625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104684

RESUMO

In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10028-2.

3.
Comput Biol Med ; 153: 106548, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652867

RESUMO

Existing warfarin dose prediction algorithms based on pharmacogenetics and clinical parameters have not been used clinically due to the absence of external validation, lack of assessment for clinical utility, and high risk of bias. Moreover, given the high degree of heterogeneity across different datasets used to develop these algorithms, it is unsurprising that prediction errors remain high, and dosing accuracy is dependent on specific ethnic populations. To circumvent these challenges, deep neural models are increasingly used to improve the precision and accuracy of warfarin dose predictions. Hence, this study sought to develop a deep learning-based model using a well-established curated dataset of over 6000 patients from the International Warfarin Pharmacogenomics Consortium (IWPC). Clinically-relevant input data such as physical attributes, medical conditions, concomitant medications, genotype status of functional warfarin genetic polymorphisms, and therapeutic INR were entered followed by applying a unique and robust training and validation method. The deep model yielded a low average mean absolute error (MAE) of 7.6 mg/week and a relatively low mean percentage of error of 40.9% in Asians, 14.2 mg/week MAE and 36.9% in African Americans, and 12.7 mg/week MAE and 45.4% mean percentage of error in White Caucasians. This model also resulted in 36.4% of all patients with a predicted dose within 20% of the administered dose. Hence, our proposed deep model provides an alternative to predicting warfarin dose in the clinical setting upon validation in ethnically-similar datasets.


Assuntos
Anticoagulantes , Aprendizado Profundo , Varfarina , Humanos , Algoritmos , Anticoagulantes/administração & dosagem , Relação Dose-Resposta a Droga , Genótipo , Farmacogenética/métodos , Vitamina K Epóxido Redutases/genética , Varfarina/administração & dosagem
4.
Comput Methods Programs Biomed ; 229: 107308, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535127

RESUMO

BACKGROUND AND OBJECTIVE: Myocardial infarction (MI) is a life-threatening condition diagnosed acutely on the electrocardiogram (ECG). Several errors, such as noise, can impair the prediction of automated ECG diagnosis. Therefore, quantification and communication of model uncertainty are essential for reliable MI diagnosis. METHODS: A Dirichlet DenseNet model that could analyze out-of-distribution data and detect misclassification of MI and normal ECG signals was developed. The DenseNet model was first trained with the pre-processed MI ECG signals (from the best lead V6) acquired from the Physikalisch-Technische Bundesanstalt (PTB) database, using the reverse Kullback-Leibler (KL) divergence loss. The model was then tested with newly synthesized ECG signals with added em and ma noise samples. Predictive entropy was used as an uncertainty measure to determine the misclassification of normal and MI signals. Model performance was evaluated using four uncertainty metrics: uncertainty sensitivity (UNSE), uncertainty specificity (UNSP), uncertainty accuracy (UNAC), and uncertainty precision (UNPR); the classification threshold was set at 0.3. RESULTS: The UNSE of the DenseNet model was low but increased over the studied decremental noise range (-6 to 24 dB), indicating that the model grew more confident in classifying the signals as they got less noisy. The model became more certain in its predictions from SNR values of 12 dB and 18 dB onwards, yielding UNAC values of 80% and 82.4% for em and ma noise signals, respectively. UNSP and UNPR values were close to 100% for em and ma noise signals, indicating that the model was self-aware of what it knew and didn't. CONCLUSION: Through this work, it has been established that the model is reliable as it was able to convey when it was not confident in the diagnostic information it was presenting. Thus, the model is trustworthy and can be used in healthcare applications, such as the emergency diagnosis of MI on ECGs.


Assuntos
Eletrocardiografia , Infarto do Miocárdio , Humanos , Incerteza , Infarto do Miocárdio/diagnóstico , Bases de Dados Factuais , Entropia
5.
Int J Mach Learn Cybern ; 14(5): 1651-1668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36467277

RESUMO

Myocardial infarction (MI) is detected using electrocardiography (ECG) signals. Machine learning (ML) models have been used for automated MI detection on ECG signals. Deep learning models generally yield high classification performance but are computationally intensive. We have developed a novel multilevel hybrid feature extraction-based classification model with low time complexity for MI classification. The study dataset comprising 12-lead ECGs belonging to one healthy and 10 MI classes were downloaded from a public ECG signal databank. The model architecture comprised multilevel hybrid feature extraction, iterative feature selection, classification, and iterative majority voting (IMV). In the hybrid handcrafted feature (HHF) generation phase, both textural and statistical feature extraction functions were used to extract features from ECG beats but only at a low level. A new pooling-based multilevel decomposition model was presented to enable them to create features at a high level. This model used average and maximum pooling to create decomposed signals. Using these pooling functions, an unbalanced tree was obtained. Therefore, this model was named multilevel unbalanced pooling tree transformation (MUPTT). On the feature extraction side, two extractors (functions) were used to generate both statistical and textural features. To generate statistical features, 20 commonly used moments were used. A new, improved symmetric binary pattern function was proposed to generate textural features. Both feature extractors were applied to the original MI signal and the decomposed signals generated by the MUPTT. The most valuable features from among the extracted feature vectors were selected using iterative neighborhood component analysis (INCA). In the classification phase, a one-dimensional nearest neighbor classifier with ten-fold cross-validation was used to obtain lead-wise results. The computed lead-wise results derived from all 12 leads of the same beat were input to the IMV algorithm to generate ten voted results. The most representative was chosen using a greedy technique to calculate the overall classification performance of the model. The HHF-MUPTT-based ECG beat classification model attained excellent performance, with the best lead-wise accuracy of 99.85% observed in Lead III and 99.94% classification accuracy using the IMV algorithm. The results confirmed the high MI classification ability of the presented computationally lightweight HHF-MUPTT-based model.

6.
Comput Methods Programs Biomed ; 241: 107775, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651817

RESUMO

BACKGROUND AND OBJECTIVE: Attention Deficit Hyperactivity problem (ADHD) is a common neurodevelopment problem in children and adolescents that can lead to long-term challenges in life outcomes if left untreated. Also, ADHD is frequently associated with Conduct Disorder (CD), and multiple research have found similarities in clinical signs and behavioral symptoms between both diseases, making differentiation between ADHD, ADHD comorbid with CD (ADHD+CD), and CD a subjective diagnosis. Therefore, the goal of this pilot study is to create the first explainable deep learning (DL) model for objective ECG-based ADHD/CD diagnosis as having an objective biomarker may improve diagnostic accuracy. METHODS: The dataset used in this study consist of ECG data collected from 45 ADHD, 62 ADHD+CD, and 16 CD patients at the Child Guidance Clinic in Singapore. The ECG data were segmented into 2 s epochs and directly used to train our 1-dimensional (1D) convolutional neural network (CNN) model. RESULTS: The proposed model yielded 96.04% classification accuracy, 96.26% precision, 95.99% sensitivity, and 96.11% F1-score. The Gradient-weighted class activation mapping (Grad-CAM) function was also used to highlight the important ECG characteristics at specific time points that most impact the classification score. CONCLUSION: In addition to achieving model performance results with our suggested DL method, Grad-CAM's implementation also offers vital temporal data that clinicians and other mental healthcare professionals can use to make wise medical judgments. We hope that by conducting this pilot study, we will be able to encourage larger-scale research with a larger biosignal dataset. Hence allowing biosignal-based computer-aided diagnostic (CAD) tools to be implemented in healthcare and ambulatory settings, as ECG can be easily obtained via wearable devices such as smartwatches.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno da Conduta , Adolescente , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Projetos Piloto , Redes Neurais de Computação , Eletrocardiografia
7.
Comput Biol Med ; 146: 105550, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533457

RESUMO

Myocardial infarction (MI) accounts for a high number of deaths globally. In acute MI, accurate electrocardiography (ECG) is important for timely diagnosis and intervention in the emergency setting. Machine learning is increasingly being explored for automated computer-aided ECG diagnosis of cardiovascular diseases. In this study, we have developed DenseNet and CNN models for the classification of healthy subjects and patients with ten classes of MI based on the location of myocardial involvement. ECG signals from the Physikalisch-Technische Bundesanstalt database were pre-processed, and the ECG beats were extracted using an R peak detection algorithm. The beats were then fed to the two models separately. While both models attained high classification accuracies (more than 95%), DenseNet is the preferred model for the classification task due to its low computational complexity and higher classification accuracy than the CNN model due to feature reusability. An enhanced class activation mapping (CAM) technique called Grad-CAM was subsequently applied to the outputs of both models to enable visualization of the specific ECG leads and portions of ECG waves that were most influential for the predictive decisions made by the models for the 11 classes. It was observed that Lead V4 was the most activated lead in both the DenseNet and CNN models. Furthermore, this study has also established the different leads and parts of the signal that get activated for each class. This is the first study to report features that influenced the classification decisions of deep models for multiclass classification of MI and healthy ECGs. Hence this study is crucial and contributes significantly to the medical field as with some level of visible explainability of the inner workings of the models, the developed DenseNet and CNN models may garner needed clinical acceptance and have the potential to be implemented for ECG triage of MI diagnosis in hospitals and remote out-of-hospital settings.


Assuntos
Aprendizado Profundo , Infarto do Miocárdio , Algoritmos , Diagnóstico por Computador , Eletrocardiografia/métodos , Humanos , Infarto do Miocárdio/diagnóstico
8.
Artigo em Inglês | MEDLINE | ID: mdl-35162220

RESUMO

Mental disorders (MDs) with onset in childhood or adolescence include neurodevelopmental disorders (NDDs) (intellectual disability and specific learning disabilities, such as dyslexia, attention deficit disorder (ADHD), and autism spectrum disorders (ASD)), as well as a broad range of mental health disorders (MHDs), including anxiety, depressive, stress-related and psychotic disorders. There is a high co-morbidity of NDDs and MHDs. Globally, there have been dramatic increases in the diagnosis of childhood-onset mental disorders, with a 2- to 3-fold rise in prevalence for several MHDs in the US over the past 20 years. Depending on the type of MD, children often grapple with social and communication deficits and difficulties adapting to changes in their environment, which can impact their ability to learn effectively. To improve outcomes for children, it is important to provide timely and effective interventions. This review summarises the range and effectiveness of AI-assisted tools, developed using machine learning models, which have been applied to address learning challenges in students with a range of NDDs. Our review summarises the evidence that AI tools can be successfully used to improve social interaction and supportive education. Based on the limitations of existing AI tools, we provide recommendations for the development of future AI tools with a focus on providing personalised learning for individuals with NDDs.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Adolescente , Transtornos de Ansiedade , Inteligência Artificial , Criança , Humanos , Transtornos do Neurodesenvolvimento/epidemiologia
9.
Int J Imaging Syst Technol ; 31(2): 455-471, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33821093

RESUMO

In 2020 the world is facing unprecedented challenges due to COVID-19. To address these challenges, many digital tools are being explored and developed to contain the spread of the disease. With the lack of availability of vaccines, there is an urgent need to avert resurgence of infections by putting some measures, such as contact tracing, in place. While digital tools, such as phone applications are advantageous, they also pose challenges and have limitations (eg, wireless coverage could be an issue in some cases). On the other hand, wearable devices, when coupled with the Internet of Things (IoT), are expected to influence lifestyle and healthcare directly, and they may be useful for health monitoring during the global pandemic and beyond. In this work, we conduct a literature review of contact tracing methods and applications. Based on the literature review, we found limitations in gathering health data, such as insufficient network coverage. To address these shortcomings, we propose a novel intelligent tool that will be useful for contact tracing and prediction of COVID-19 clusters. The solution comprises a phone application combined with a wearable device, infused with unique intelligent IoT features (complex data analysis and intelligent data visualization) embedded within the system to aid in COVID-19 analysis. Contact tracing applications must establish data collection and data interpretation. Intelligent data interpretation can assist epidemiological scientists in anticipating clusters, and can enable them to take necessary action in improving public health management. Our proposed tool could also be used to curb disease incidence in future global health crises.

10.
Comput Methods Programs Biomed ; 200: 105941, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486340

RESUMO

BACKGROUND AND OBJECTIVES: Attention deficit hyperactivity disorder (ADHD) is often presented with conduct disorder (CD). There is currently no objective laboratory test or diagnostic method to discern between ADHD and CD, and diagnosis is further made difficult as ADHD is a common neuro-developmental disorder often presenting with other co-morbid difficulties; and in particular with conduct disorder which has a high degree of associated behavioural challenges. A novel automated system (AS) is proposed as a convenient supplementary tool to support clinicians in their diagnostic decisions. To the best of our knowledge, we are the first group to develop an automated classification system to classify ADHD, CD and ADHD+CD classes using brain signals. METHODS: The empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods were employed to decompose the electroencephalogram (EEG) signals. Autoregressive modelling coefficients and relative wavelet energy were then computed on the signals. Various nonlinear features were extracted from the decomposed coefficients. Adaptive synthetic sampling (ADASYN) was then employed to balance the dataset. The significant features were selected using sequential forward selection method. The highly discriminatory features were subsequently fed to an array of classifiers. RESULTS: The highest accuracy of 97.88% was achieved with the K-Nearest Neighbour (KNN) classifier. The proposed system was developed using ten-fold validation strategy on EEG data from 123 children. To the best of our knowledge this is the first study to develop an AS for the classification of ADHD, CD and ADHD+CD classes using EEG signals. POTENTIAL APPLICATION: Our AS can potentially be used as a web-based application with cloud system to aid the clinical diagnosis of ADHD and/or CD, thus supporting faster and accurate treatment for the children. It is important to note that testing with larger data is required before the AS can be employed for clinical applications.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno da Conduta , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo , Criança , Transtorno da Conduta/diagnóstico , Eletroencefalografia , Humanos , Análise de Ondaletas
11.
Comput Methods Programs Biomed ; 203: 106010, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33831693

RESUMO

BACKGROUND AND OBJECTIVES: Celiac disease is an autoimmune disease occurring in about 1 in 100 people worldwide. Early diagnosis and efficient treatment are crucial in mitigating the complications that are associated with untreated celiac disease, such as intestinal lymphoma and malignancy, and the subsequent high morbidity. The current diagnostic methods using small intestinal biopsy histopathology, endoscopy, and video capsule endoscopy (VCE) involve manual interpretation of photomicrographs or images, which can be time-consuming and difficult, with inter-observer variability. In this paper, a machine learning technique was developed for the automation of biopsy image analysis to detect and classify villous atrophy based on modified Marsh scores. This is one of the first studies to employ conventional machine learning to automate the use of biopsy images for celiac disease detection and classification. METHODS: The Steerable Pyramid Transform (SPT) method was used to obtain sub bands from which various types of entropy and nonlinear features were computed. All extracted features were automatically classified into two-class and multi-class, using six classifiers. RESULTS: An accuracy of 88.89%, was achieved for the classification of two-class villous abnormalities based on analysis of Hematoxylin and Eosin (H&E) stained biopsy images. Similarly, an accuracy of 82.92% was achieved for the two-class classification of red-green-blue (RGB) biopsy images. Also, an accuracy of 72% was achieved in the classification of multi-class biopsy images. CONCLUSION: The results obtained are promising, and demonstrate the possibility of automating biopsy image interpretation using machine learning. This can assist pathologists in accelerating the diagnostic process without bias, resulting in greater accuracy, and ultimately, earlier access to treatment.


Assuntos
Endoscopia por Cápsula , Doença Celíaca , Algoritmos , Biópsia , Doença Celíaca/diagnóstico , Humanos , Aprendizado de Máquina
12.
Comput Biol Med ; 126: 103999, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32992139

RESUMO

BACKGROUND: Hypertension (HPT) occurs when there is increase in blood pressure (BP) within the arteries, causing the heart to pump harder against a higher afterload to deliver oxygenated blood to other parts of the body. PURPOSE: Due to fluctuation in BP, 24-h ambulatory blood pressure monitoring has emerged as a useful tool for diagnosing HPT but is limited by its inconvenience. So, an automatic diagnostic tool using electrocardiogram (ECG) signals is used in this study to detect HPT automatically. METHOD: The pre-processed signals are fed to a convolutional neural network model. The model learns and identifies unique ECG signatures for classification of normal and hypertension ECG signals. The proposed model is evaluated by the 10-fold and leave one out patient based validation techniques. RESULTS: A high classification accuracy of 99.99% is achieved for both validation techniques. This is one of the first few studies to have employed deep learning algorithm coupled with ECG signals for the detection of HPT. Our results imply that the developed tool is useful in a hospital setting as an automated diagnostic tool, enabling the effortless detection of HPT using ECG signals.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Hipertensão , Algoritmos , Eletrocardiografia , Humanos , Hipertensão/diagnóstico , Redes Neurais de Computação
13.
Comput Biol Med ; 118: 103630, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32174317

RESUMO

Hypertension (HPT), also known as high blood pressure, is a precursor to heart, brain or kidney diseases. Some symptoms of HPT include headaches, dizziness and fainting. The potential diagnosis of masked hypertension is of specific interest in this study. In masked hypertension (MHPT), the instantaneous blood pressure appears normal, but the 24-h ambulatory blood pressure is abnormal. Hence patients with MHPT are difficult to identify and thus remain untreated or are treated insufficiently. Hence, a computational intelligence tool (CIT) using electrocardiograms (ECG) signals for HPT and possible MHPT detection is proposed in this work. Empirical mode decomposition (EMD) is employed to decompose the pre-processed signals up to five levels. Nonlinear features are extracted from the five intrinsic mode functions (IMFs) thereafter. Student's t-test is subsequently applied to select a set of highly discriminatory features. This feature set is then input to various classifiers, in which, the best accuracy of 97.70% is yielded by the k-nearest neighbor (k-NN) classifier. The developed tool is evaluated by the 10-fold cross validation technique. Our findings suggest that the developed system is useful for diagnostic computational intelligence tool in hospital settings, and that it enables the automatic classification of HPT versus normal ECG signals.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Hipertensão , Algoritmos , Inteligência Artificial , Eletrocardiografia , Humanos , Hipertensão/diagnóstico , Processamento de Sinais Assistido por Computador
14.
Comput Biol Med ; 127: 103957, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32938540

RESUMO

Multiple organ failure is the trademark of sepsis. Sepsis occurs when the body's reaction to infection causes injury to its tissues and organs. As a consequence, fluid builds up in the tissues causing organ failure and leading to septic shock eventually. Some symptoms of sepsis include fever, arrhythmias, blood vessel leaks, impaired clotting, and generalised inflammation. In order to address the limitations in current diagnosis, we have proposed a cost-effective automated diagnostic tool in this study. A deep temporal convolution network has been developed for the prediction of sepsis. Septic data was fed to the model and a high accuracy and area under ROC curve (AUROC) of 98.8% and 98.0% were achieved respectively, for per time-step metrics. A relatively high accuracy and AUROC of 95.5% and 91.0% were also achieved respectively, for per-patient metrics. This is a novel study in that it has investigated per time-step metrics, compared to other studies which investigated per-patient metrics. Our model has also been evaluated by three validation methods. Thus, the recommended model is robust with high accuracy and precision and has the potential to be used as a tool for the prediction of sepsis in hospitals.


Assuntos
Sepse , Choque Séptico , Área Sob a Curva , Humanos , Curva ROC , Estudos Retrospectivos , Sepse/diagnóstico
15.
Comput Methods Programs Biomed ; 196: 105604, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593061

RESUMO

BACKGROUND AND OBJECTIVES: The high mortality rate and increasing prevalence of heart valve diseases globally warrant the need for rapid and accurate diagnosis of such diseases. Phonocardiogram (PCG) signals are used in this study due to the low cost of obtaining the signals. This study classifies five types of heart sounds, namely normal, aortic stenosis, mitral valve prolapse, mitral stenosis, and mitral regurgitation. METHODS: We have proposed a novel in-house developed deep WaveNet model for automated classification of five types of heart sounds. The model is developed using a total of 1000 PCG recordings belonging to five classes with 200 recordings in each class. RESULTS: We have achieved a training accuracy of 97% for the classification of heart sounds into five classes. The highest classification accuracy of 98.20% was achieved for the normal class. The developed model was validated with a 10-fold cross-validation, thus affirming its robustness. CONCLUSION: The study results clearly indicate that the developed model is able to classify five types of heart sounds accurately. The developed system can be used by cardiologists to aid in the detection of heart valve diseases in patients.


Assuntos
Estenose da Valva Aórtica , Ruídos Cardíacos , Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-32033231

RESUMO

Autistic individuals often have difficulties expressing or controlling emotions and have poor eye contact, among other symptoms. The prevalence of autism is increasing globally, posing a need to address this concern. Current diagnostic systems have particular limitations; hence, some individuals go undiagnosed or the diagnosis is delayed. In this study, an effective autism diagnostic system using electroencephalogram (EEG) signals, which are generated from electrical activity in the brain, was developed and characterized. The pre-processed signals were converted to two-dimensional images using the higher-order spectra (HOS) bispectrum. Nonlinear features were extracted thereafter, and then reduced using locality sensitivity discriminant analysis (LSDA). Significant features were selected from the condensed feature set using Student's t-test, and were then input to different classifiers. The probabilistic neural network (PNN) classifier achieved the highest accuracy of 98.70% with just five features. Ten-fold cross-validation was employed to evaluate the performance of the classifier. It was shown that the developed system can be useful as a decision support tool to assist healthcare professionals in diagnosing autism.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Análise Discriminante , Eletroencefalografia , Feminino , Humanos , Masculino , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
17.
Comput Biol Med ; 105: 92-101, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30599317

RESUMO

Abnormality of the cardiac conduction system can induce arrhythmia - abnormal heart rhythm - that can frequently lead to other cardiac diseases and complications, and are sometimes life-threatening. These conduction system perturbations can manifest as morphological changes on the surface electrocardiographic (ECG) signal. Assessment of these morphological changes can be challenging and time-consuming, as ECG signal features are often low in amplitude and subtle. The main aim of this study is to develop an automated computer aided diagnostic (CAD) system that can expedite the process of arrhythmia diagnosis, as an aid to clinicians to provide appropriate and timely intervention to patients. We propose an autoencoder of ECG signals that can diagnose normal sinus beats, atrial premature beats (APB), premature ventricular contractions (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB). Apart from the first, the rest are morphological beat-to-beat elements that characterize and constitute complex arrhythmia. The novelty of this work lies in how we modified the U-net model to perform beat-wise analysis on heterogeneously segmented ECGs of variable lengths derived from the MIT-BIH arrhythmia database. The proposed system has demonstrated self-learning ability in generating class activations maps, and these generated maps faithfully reflect the cardiac conditions in each ECG cardiac cycle. It has attained a high classification accuracy of 97.32% in diagnosing cardiac conditions, and 99.3% for R peak detection using a ten-fold cross validation strategy. Our developed model can help physicians to screen ECG accurately, potentially resulting in timely intervention of patients with arrhythmia.


Assuntos
Arritmias Cardíacas/fisiopatologia , Bases de Dados Factuais , Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Feminino , Humanos , Masculino
18.
Phys Med ; 62: 95-104, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153403

RESUMO

The heart muscle pumps blood to vital organs, which is indispensable for human life. Congestive heart failure (CHF) is characterized by the inability of the heart to pump blood adequately throughout the body without an increase in intracardiac pressure. The symptoms include lung and peripheral congestion, leading to breathing difficulty and swollen limbs, dizziness from reduced delivery of blood to the brain, as well as arrhythmia. Coronary artery disease, myocardial infarction, and medical co-morbidities such as kidney disease, diabetes, and high blood pressure all take a toll on the heart and can impair myocardial function. CHF prevalence is growing worldwide. It afflicts millions of people globally, and is a leading cause of death. Hence, proper diagnosis, monitoring and management are imperative. The importance of an objective CHF diagnostic tool cannot be overemphasized. Standard diagnostic tests for CHF include chest X-ray, magnetic resonance imaging (MRI), nuclear imaging, echocardiography, and invasive angiography. However, these methods are costly, time-consuming, and they can be operator-dependent. Electrocardiography (ECG) is inexpensive and widely accessible, but ECG changes are typically not specific for CHF diagnosis. A properly designed computer-aided detection (CAD) system for CHF, based on the ECG, would potentially reduce subjectivity and provide quantitative assessment for informed decision-making. Herein, we review existing CAD for automatic CHF diagnosis, and highlight the development of an ECG-based CAD diagnostic system that employs deep learning algorithms to automatically detect CHF.


Assuntos
Diagnóstico por Computador/métodos , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Aprendizado Profundo , Humanos , Processamento de Sinais Assistido por Computador
19.
Comput Methods Programs Biomed ; 175: 163-178, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104705

RESUMO

BACKGROUND AND OBJECTIVE: Complex fractionated atrial electrograms (CFAE) may contain information concerning the electrophysiological substrate of atrial fibrillation (AF); therefore they are of interest to guide catheter ablation treatment of AF. Electrogram signals are shaped by activation events, which are dynamical in nature. This makes it difficult to establish those signal properties that can provide insight into the ablation site location. Nonlinear measures may improve information. To test this hypothesis, we used nonlinear measures to analyze CFAE. METHODS: CFAE from several atrial sites, recorded for a duration of 16 s, were acquired from 10 patients with persistent and 9 patients with paroxysmal AF. These signals were appraised using non-overlapping windows of 1-, 2- and 4-s durations. The resulting data sets were analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). The data was also quantified via entropy measures. RESULTS: RQA exhibited unique plots for persistent versus paroxysmal AF. Similar patterns were observed to be repeated throughout the RPs. Trends were consistent for signal segments of 1 and 2 s as well as 4 s in duration. This was suggestive that the underlying signal generation process is also repetitive, and that repetitiveness can be detected even in 1-s sequences. The results also showed that most entropy metrics exhibited higher measurement values (closer to equilibrium) for persistent AF data. It was also found that Determinism (DET), Trapping Time (TT), and Modified Multiscale Entropy (MMSE), extracted from signals that were acquired from locations at the posterior atrial free wall, are highly discriminative of persistent versus paroxysmal AF data. CONCLUSIONS: Short data sequences are sufficient to provide information to discern persistent versus paroxysmal AF data with a significant difference, and can be useful to detect repeating patterns of atrial activation.


Assuntos
Fibrilação Atrial/diagnóstico , Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Interpretação Estatística de Dados , Lógica Fuzzy , Humanos , Dinâmica não Linear , Processamento de Sinais Assistido por Computador
20.
Comput Biol Med ; 100: 270-278, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974302

RESUMO

An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.


Assuntos
Diagnóstico por Computador , Eletroencefalografia , Epilepsia/fisiopatologia , Aprendizado de Máquina , Redes Neurais de Computação , Convulsões/fisiopatologia , Processamento de Sinais Assistido por Computador , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA