RESUMO
It is a useful method for the adaptive radiotherapy (ART) to calculate absorbed dose accurately on the image set taken by on-board cone beam computed tomography (CBCT) attached to linac for image-guided radiation therapy (IGRT). For this purpose, a simple and accurate calculation method is necessary. Several papers report that it is possible to calculate easily and accurately by using several methods of researches in the neck and prostate, but the lung density varies greatly depending on patient thorax condition. In this study, we propose a new dose recalculation method, which is a simple procedure and can achieve accurate dose calculation considered different lung densities in each patient. By using this method, it is possible to calculate exclusive of artifacts in CBCT because of overriding the lung density. The dose error between dose recalculation of the CBCT image and treatment plan agreed within±1%. Therefore, this method is expected to be a useful method for accurate dose calculation with CBCT image for ART.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem , Artefatos , Humanos , Masculino , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , TóraxRESUMO
The purpose of this study was to extract the three-dimensional (3D) vector of the baseline drift baseline drift vector (BDV) of the specific points on the body surface and to demonstrate the importance of the 3D tracking of the body surface. Our system consisted of a near-infrared camera (NIC: Kinect V2) and software that recognized and tracked blue stickers as markers. We acquired 3D coordinates of 30 markers stuck on the body surface for 30 min for eight healthy volunteers and developed a simple technique to extract the BDV. The BDV on the sternum, rib, and abdomen was extracted from the measured data. BDV per min. was analyzed to estimate the frequency to exceed a given tolerance. Also, the correlation among BDVs for multiple body sites was analyzed. The longitudinal baseline drift was observed in the BDV of healthy volunteers. Among the eight volunteers, the maximum probability that the BDV per min. exceeded the tolerance of 1 mm and 2 mm was 30% and 15%, respectively. The correlation among BDVs of multiple body sites suggested a potential feasibility to distinguish the translational movement of the whole area and the respiratory movement. In conclusion, we constructed the 3D tracking system of multiple points on the body surface using a noninvasive NIC at a low cost and established the method to extract the BDV. The existence of the longitudinal baseline drift showed the importance of the 3D tracking in the body surface.
Assuntos
Movimento , Software , Humanos , RespiraçãoRESUMO
Rho family protein regulates variety of cellular functions as cytoskeletal organization, cell proliferation and apoptosis. In the present study, we demonstrate that RhoB-overexpressed prostate cancer cells showed an enhanced cell motility and the administration of the GSK-3 inhibitors inhibited this increase in migration. Among the extracellular matrix and adhesion-related molecules, MMP1 RNA expression was increased in RhoB-overexpressed cells, administration of MMP inhibitor suppressed the collagen gel invasion in these cells. This is the first report evaluating RhoB function and the downstream signaling events in prostate cancer cell. Our results indicate that RhoB promotes cell motility and invasion in a metastatic prostate cancer cell.
Assuntos
Regulação Neoplásica da Expressão Gênica , Metaloproteinase 1 da Matriz/genética , Neoplasias da Próstata/genética , Proteína rhoB de Ligação ao GTP/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/metabolismoRESUMO
PURPOSE: A patient's respiratory monitoring is one of the key techniques in radiotherapy for a moving target. Generally, such monitoring systems are permanently set to a fixed geometry during the installation. This study aims to enable a temporary setup of such a monitoring system by developing a fast method to automatically calibrate the geometrical position by a quick measurement of calibration markers. METHODS: One calibration marker was placed on the isocenter and the other six markers were placed at positions 5-cm apart from the isocenter to the left, right, anterior, posterior, superior, and inferior directions. A near-infrared (NIR) camera (NIC) [Kinect v2 (Microsoft Corp.)] was arbitrarily set with ten different angles around the calibration phantom with a fixed tilting-down angle at approximately 45° in a linear accelerator treatment vault. The three-dimensional (3D) coordinates in the camera (Cam) coordinate system (CS; x and y are the horizontal and vertical coordinates of the image, respectively, and z is a coordinate along the NIR time-of-flight) were taken for 1 min with 30 frames per second. The data corresponding to the measurement times of 1, 3, 10, 30, and 60 s were created to mimic various measurement times. These data were used to calculate the initial matrix elements, which included six parameters of the pitching, yawing, and rolling angles; horizontal two-dimensional translation in the treatment room; and the source-to-axis distance of NIC, for a conversion from the Cam CS to the treatment room CS for which the origin was defined at the isocenter (Iso coordinate). The six parameters were then optimized to minimize the displacements of the calculated marker coordinates from the actual positions in the Iso CS. The 3D positional accuracy and angular accuracy of the conversion were evaluated. The random error of the Iso coordinates was analyzed through a relation with the angle of each measurement setup. RESULTS: Three angles of NIC and relative translation vectors were successfully calculated from the measurement data of the calibration markers. The achieved spatial and angular accuracies were 0.02 mm and 1.6°, respectively, after the optimization. Among the mimicked measurement times investigated in this study, both spatial and angular accuracies had no dependence on the measurement time. The average random error of a static marker was 0.46 mm after the optimization. CONCLUSION: We developed an automatic method to calibrate the 3D patient surface monitoring system. The procedure developed in this study enabled a quick calibration of NIC, which can be easily repeated multiple times for a frequent and quick setup of the monitoring system.