RESUMO
Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.
Assuntos
Tecido Adiposo Marrom/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético , Homeostase , Proteínas Mitocondriais/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Animais , Temperatura Baixa , Intolerância à Glucose/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismoRESUMO
Nonsteroid anti-inflammatory drugs (NSAIDs) are among the most frequently prescribed drugs currently available. The most frequently reported serious side effects associated with NSAIDs are gastric mucosal ulceration and gastric hemorrhage. Presently, these side effects are only detectable by endoscopy, however, and no biomarkers have yet been identified. The ability to identify serum biomarkers would likely improve the safety of NSAID use. In this study we performed capillary electrophoresis-mass spectrometry (CE-MS)-based metabolomic profiling in stomach extract and serum from rats administered NSAIDs. Results showed drug-induced decreases in levels of citrate, cis-aconitate, succinate, 3-hydroxy butanoic acid, o-acetyl carnitine, proline, and hydroxyproline. We consider that these changes are due to NSAID-induced depression of mitochondrial function and activation of collagenase by lesions in the stomach. In addition, four of these changes in metabolite levels in the stomach were significantly correlated with changes in the serum. While further study is needed to clarify the mechanism of change in the level of these biomarkers, limitation of indications, and extrapolation to humans, these new serum biomarker candidates of gastric injury may be useful in the monitoring of NSAID-induced tissue damage.
Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Biomarcadores/sangue , Úlcera Gástrica/sangue , Animais , Eletroforese Capilar , Masculino , Espectrometria de Massas , Metabolômica , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamenteRESUMO
Cancer-specific metabolic activities play a crucial role in the pathogenesis of human malignancies. To investigate human acute leukemia-specific metabolic properties, we comprehensively measured the cellular metabolites within the CD34+ fraction of normal hematopoietic stem progenitor cells (HSPCs), primary human acute myelogenous leukemia (AML), and acute lymphoblastic leukemia (ALL) cells. Here, we show that human leukemia cells are addicted to the branched-chain amino acid (BCAA) metabolism to maintain their stemness, irrespective of myeloid or lymphoid types. Human primary acute leukemias had BCAA transporters for BCAA uptake, cellular BCAA, α-ketoglutarate (α-KG), and cytoplasmic BCAA transaminase-1 (BCAT1) at significantly higher levels than control HSPCs. Isotope-tracing experiments showed that in primary leukemia cells, BCAT1 actively catabolizes BCAA using α-KG into branched-chain α-ketoacids, whose metabolic processes provide leukemia cells with critical substrates for the trichloroacetic acid cycle and the synthesis of nonessential amino acids, both of which reproduce α-KG to maintain its cellular level. In xenogeneic transplantation experiments, deprivation of BCAA from daily diet strongly inhibited expansion, engraftment and self-renewal of human acute leukemia cells. Inhibition of BCAA catabolism in primary AML or ALL cells specifically inactivates the function of the polycomb repressive complex 2, an epigenetic regulator for stem cell signatures, by inhibiting the transcription of PRC components, such as zeste homolog 2 and embryonic ectoderm development. Accordingly, BCAA catabolism plays an important role in the maintenance of stemness in primary human AML and ALL, and molecules related to the BCAA metabolism pathway should be critical targets for acute leukemia treatment.
Assuntos
Aminoácidos de Cadeia Ramificada , Leucemia Mieloide Aguda , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Complexo Repressor Polycomb 2 , Transaminases/metabolismo , CetoácidosRESUMO
Estrogen receptor (ER) positive breast cancer represents 75% of all breast cancers in women. Although patients with ER+ cancers receive endocrine therapies, more than 30% develop resistance and succumb to the disease, highlighting the need to understand endocrine resistance. Here we show an unexpected role for the cell polarity protein SCRIB as a tumor-promoter and a regulator of endocrine resistance in ER-positive breast cancer cells. SCRIB expression is induced by estrogen signaling in a MYC-dependent manner. SCRIB interacts with SLC3A2, a heteromeric component of leucine amino acid transporter SLC7A5. SLC3A2 binds to the N-terminus of SCRIB to facilitate the formation of SCRIB/SLC3A2/LLGL2/SLC7A5 quaternary complex required for membrane localization of the amino acid transporter complex. Both SCRIB and SLC3A2 are required for cell proliferation and tamoxifen resistance in ER+ cells identifying a new role for the SCRIB/SLC3A2 complex in ER+ breast cancer.
Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Proteínas de Membrana , Tamoxifeno , Proteínas Supressoras de Tumor , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células , Proteínas do Citoesqueleto , Estrogênios , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Humanos , Transportador 1 de Aminoácidos Neutros Grandes , Proteínas de Membrana/genética , Receptores de Estrogênio , Tamoxifeno/farmacologia , Proteínas Supressoras de Tumor/genéticaRESUMO
Epithelial-mesenchymal transition (EMT)-a fundamental process in embryogenesis and wound healing-promotes tumor metastasis and resistance to chemotherapy. While studies have identified signaling components and transcriptional factors responsible in the TGF-ß-dependent EMT, whether and how intracellular metabolism is integrated with EMT remains to be fully elucidated. Here, we showed that TGF-ß induces reprogramming of intracellular amino acid metabolism, which is necessary to promote EMT in non-small cell lung cancer cells. Combined metabolome and transcriptome analysis identified prolyl 4-hydroxylase α3 (P4HA3), an enzyme implicated in cancer metabolism, to be upregulated during TGF-ß stimulation. Further, knockdown of P4HA3 diminished TGF-ß-dependent changes in amino acids, EMT, and tumor metastasis. Conversely, manipulation of extracellular amino acids induced EMT-like responses without TGF-ß stimulation. These results suggest a previously unappreciated requirement for the reprogramming of amino acid metabolism via P4HA3 for TGF-ß-dependent EMT and implicate a P4HA3 inhibitor as a potential therapeutic agent for cancer.
Assuntos
Aminoácidos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Metabolômica , Camundongos , Pró-Colágeno-Prolina Dioxigenase/fisiologiaRESUMO
Gene-edited induced pluripotent stem cells (iPSCs) provide relevant isogenic human disease models in patient-specific or healthy genetic backgrounds. Towards this end, gene targeting using antibiotic selection along with engineered point mutations remains a reliable method to enrich edited cells. Nevertheless, integrated selection markers obstruct scarless transgene-free gene editing. Here, we present a method for scarless selection marker excision using engineered microhomology-mediated end joining (MMEJ). By overlapping the homology arms of standard donor vectors, short tandem microhomologies are generated flanking the selection marker. Unique CRISPR-Cas9 protospacer sequences nested between the selection marker and engineered microhomologies are cleaved after gene targeting, engaging MMEJ and scarless excision. Moreover, when point mutations are positioned unilaterally within engineered microhomologies, both mutant and normal isogenic clones are derived simultaneously. The utility and fidelity of our method is demonstrated in human iPSCs by editing the X-linked HPRT1 locus and biallelic modification of the autosomal APRT locus, eliciting disease-relevant metabolic phenotypes.
Assuntos
Reparo do DNA por Junção de Extremidades , Edição de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos/genética , Loci Gênicos , Células HEK293 , Humanos , Mutação/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismoRESUMO
Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling.
Assuntos
Glucosefosfato Desidrogenase/genética , NADPH Oxidases/metabolismo , Neoplasias/metabolismo , Timidina Fosforilase/genética , Timidina/metabolismo , Linhagem Celular Tumoral , Di-Hidrotestosterona/farmacologia , Técnicas de Inativação de Genes , Glucosefosfato Desidrogenase/antagonistas & inibidores , Humanos , Interleucina-8/genética , Metabolismo/genética , NADPH Oxidases/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Via de Pentose Fosfato/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Timidina Fosforilase/metabolismoRESUMO
The concentrations of insulin selectively regulate multiple cellular functions. To understand how insulin concentrations are interpreted by cells, we constructed a trans-omic network of insulin action in FAO hepatoma cells using transcriptomic data, western blotting analysis of signaling proteins, and metabolomic data. By integrating sensitivity into the trans-omic network, we identified the selective trans-omic networks stimulated by high and low doses of insulin, denoted as induced and basal insulin signals, respectively. The induced insulin signal was selectively transmitted through the pathway involving Erk to an increase in the expression of immediate-early and upregulated genes, whereas the basal insulin signal was selectively transmitted through a pathway involving Akt and an increase of Foxo phosphorylation and a reduction of downregulated gene expression. We validated the selective trans-omic network in vivo by analysis of the insulin-clamped rat liver. This integrated analysis enabled molecular insight into how liver cells interpret physiological insulin signals to regulate cellular functions.
RESUMO
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma and is most frequently found in children. In RMS, there are two major subtypes, that is, embryonal RMS and alveolar RMS (ARMS). ARMS has exclusively the worse prognosis and is caused by formation of the chimeric PAX3-FOXO1 gene. Regarding cancer, the Warburg effect is known as a feature of cancer-specific metabolism. Polypyrimidine tract-binding protein 1 (PTBP1), a splicer of pyruvate kinase muscle (PKM) mRNA, is a positive regulator of cancer-specific energy metabolism. We investigated the expression and effects of muscle-specific miR-1 and miR-133b on RMS cells (RD, KYM-1, Rh30, and Rh41) from the view of energy metabolism and regulation of the chimeric gene. As a result, downregulated miR-1 and miR-133b/upregulated PTBP1 were found in RMS cell lines as well as in RMS clinical cases. Ectopic expression of either miR in both types of RMS cells induced autophagic cell death through silencing of PTBP1. Interestingly, we validated that miR-133b also knock downed PAX3-FOXO1. Moreover, we found that PAX3-FOXO1 positively regulated the PKM2-dominant expression through enhanced expression of PTBP1. These findings suggest that the miR-1 and miR-133b/PTBP1 axis and miR-133b/PAX3-FOXO1/PTBP1 axis contributed to the maintenance of cancer-specific energy metabolism.
Assuntos
Metabolismo Energético/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Adolescente , Animais , Morte Celular/fisiologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto JovemRESUMO
Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells.
Assuntos
Neoplasias Gástricas/metabolismo , Timidina Fosforilase/metabolismo , Timidina/metabolismo , Animais , Carbono/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxirribose/farmacologia , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Estado Nutricional/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Neoplasias Gástricas/patologia , Análise de Sobrevida , Timidina/químicaRESUMO
p62/Sqstm1 is a multifunctional protein involved in cell survival, growth and death, that is degraded by autophagy. Amplification of the p62/Sqstm1 gene, and aberrant accumulation and phosphorylation of p62/Sqstm1, have been implicated in tumour development. Herein, we reveal the molecular mechanism of p62/Sqstm1-dependent malignant progression, and suggest that molecular targeting of p62/Sqstm1 represents a potential chemotherapeutic approach against hepatocellular carcinoma (HCC). Phosphorylation of p62/Sqstm1 at Ser349 directs glucose to the glucuronate pathway, and glutamine towards glutathione synthesis through activation of the transcription factor Nrf2. These changes provide HCC cells with tolerance to anti-cancer drugs and proliferation potency. Phosphorylated p62/Sqstm1 accumulates in tumour regions positive for hepatitis C virus (HCV). An inhibitor of phosphorylated p62-dependent Nrf2 activation suppresses the proliferation and anticancer agent tolerance of HCC. Our data indicate that this Nrf2 inhibitor could be used to make cancer cells less resistant to anticancer drugs, especially in HCV-positive HCC patients.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Hepacivirus/isolamento & purificação , Hepatite C/complicações , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Camundongos , Análise em Microsséries , Fator 2 Relacionado a NF-E2/genética , Proteína Sequestossoma-1/genéticaRESUMO
Reduced expression of microRNA122 (miR122), a liver-specific microRNA, is frequent in hepatocellular carcinoma (HCC). However, its biological significances remain poorly understood. Because deregulated amino acid levels in cancers can affect their biological behavior, we determined the amino acid levels in miR122-silenced mouse liver tissues, in which intracellular arginine levels were significantly increased. The increased intracellular arginine levels were through upregulation of the solute carrier family 7 (SLC7A1), a transporter of arginine and a direct target of miR122. Arginine is the substrate for nitric oxide (NO) synthetase, and intracellular NO levels were increased in miR122-silenced HCC cells, with increased resistance to sorafenib, a multikinase inhibitor. Conversely, maintenance of the miR122-silenced HCC cells in arginine-depleted culture media, as well as overexpression of miR122 in miR122-low-expressing HCC cells, reversed these effects and rendered the cells more sensitive to sorafenib. Using a reporter knock-in construct, chemical compounds were screened, and Wee1 kinase inhibitor was identified as upregulators of miR122 transcription, which increased the sensitivity of the cells to sorafenib. These results provide an insight into sorafenib resistance in miR122-low HCC, and suggest that arginine depletion or a combination of sorafenib with the identified compound may provide promising approaches to managing this HCC subset.
Assuntos
Arginina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Animais , Apoptose/fisiologia , Arginina/deficiência , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , Niacinamida/farmacologia , SorafenibeRESUMO
Gastrointestinal symptoms are a common manifestation of adverse drug effects. Non-steroid anti-inflammatory drugs (NSAIDs) are widely prescribed drugs that induce the serious side effect of gastric mucosal ulceration. Biomarkers for these side effects have not been identified and ulcers are now only detectable by endoscopy. We previously identified five metabolites as biomarker candidates for NSAID-induced gastric ulcer using capillary electrophoresis-mass spectrometry (CE-MS)-based metabolomic analysis of serum and stomach from rats. Here, to clarify mechanism of changes and limitations of indications of biomarker candidates, we performed CE-MS-based metabolomic profiling in stomach and serum from rats with gastric ulcers induced by ethanol, stress, and aspirin. The results suggest that a decrease in hydroxyproline reflects the induction of gastric injury and may be useful in identifying gastric ulcer induced by multiple causes. While extrapolation to humans requires further study, hydroxyproline can be a new serum biomarker of gastric injury regardless of cause.