Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Intern Med ; 177(6): 768-781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739921

RESUMO

BACKGROUND: Whether circulating sex hormones modulate mortality and cardiovascular disease (CVD) risk in aging men is controversial. PURPOSE: To clarify associations of sex hormones with these outcomes. DATA SOURCES: Systematic literature review to July 2019, with bridge searches to March 2024. STUDY SELECTION: Prospective cohort studies of community-dwelling men with sex steroids measured using mass spectrometry and at least 5 years of follow-up. DATA EXTRACTION: Independent variables were testosterone, sex hormone-binding globulin (SHBG), luteinizing hormone (LH), dihydrotestosterone (DHT), and estradiol concentrations. Primary outcomes were all-cause mortality, CVD death, and incident CVD events. Covariates included age, body mass index, marital status, alcohol consumption, smoking, physical activity, hypertension, diabetes, creatinine concentration, ratio of total to high-density lipoprotein cholesterol, and lipid medication use. DATA SYNTHESIS: Nine studies provided individual participant data (IPD) (255 830 participant-years). Eleven studies provided summary estimates (n = 24 109). Two-stage random-effects IPD meta-analyses found that men with baseline testosterone concentrations below 7.4 nmol/L (<213 ng/dL), LH concentrations above 10 IU/L, or estradiol concentrations below 5.1 pmol/L had higher all-cause mortality, and those with testosterone concentrations below 5.3 nmol/L (<153 ng/dL) had higher CVD mortality risk. Lower SHBG concentration was associated with lower all-cause mortality (median for quintile 1 [Q1] vs. Q5, 20.6 vs. 68.3 nmol/L; adjusted hazard ratio [HR], 0.85 [95% CI, 0.77 to 0.95]) and lower CVD mortality (adjusted HR, 0.81 [CI, 0.65 to 1.00]). Men with lower baseline DHT concentrations had higher risk for all-cause mortality (median for Q1 vs. Q5, 0.69 vs. 2.45 nmol/L; adjusted HR, 1.19 [CI, 1.08 to 1.30]) and CVD mortality (adjusted HR, 1.29 [CI, 1.03 to 1.61]), and risk also increased with DHT concentrations above 2.45 nmol/L. Men with DHT concentrations below 0.59 nmol/L had increased risk for incident CVD events. LIMITATIONS: Observational study design, heterogeneity among studies, and imputation of missing data. CONCLUSION: Men with low testosterone, high LH, or very low estradiol concentrations had increased all-cause mortality. SHBG concentration was positively associated and DHT concentration was nonlinearly associated with all-cause and CVD mortality. PRIMARY FUNDING SOURCE: Medical Research Future Fund, Government of Western Australia, and Lawley Pharmaceuticals. (PROSPERO: CRD42019139668).


Assuntos
Doenças Cardiovasculares , Causas de Morte , Di-Hidrotestosterona , Estradiol , Hormônio Luteinizante , Globulina de Ligação a Hormônio Sexual , Testosterona , Humanos , Masculino , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/sangue , Testosterona/sangue , Globulina de Ligação a Hormônio Sexual/análise , Globulina de Ligação a Hormônio Sexual/metabolismo , Estradiol/sangue , Hormônio Luteinizante/sangue , Di-Hidrotestosterona/sangue , Incidência , Fatores de Risco , Idoso , Pessoa de Meia-Idade
2.
Diabetologia ; 67(5): 874-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38386069

RESUMO

AIMS/HYPOTHESIS: This study aimed to determine the relative contributions of low birthweight and overweight during childhood and young adulthood to the risk of type 2 diabetes in men. METHODS: We included 34,231 men born between1945 and 1961 from the population-based BMI Epidemiology Study (BEST) Gothenburg with data on birthweight and overweight status in childhood (8 years, BMI >17.9 kg/m2) and young adulthood (20 years, BMI >25 kg/m2). Participants were followed from age 30 years until 31 December 2019. Information on type 2 diabetes diagnoses was retrieved from Swedish national registers. HRs and 95% CIs for the risk of early (≤59.4 years) and late (>59.4 years) type 2 diabetes were estimated using Cox proportional hazards regression. RESULTS: During follow-up, a total of 2733 cases of type 2 diabetes were diagnosed. Birthweight below the median (<3.6 kg) and overweight at age 20 (BMI >25 kg/m2), but not overweight at age 8 (BMI >17.9 kg/m2), were associated with an increased risk of early and late type 2 diabetes. Of note, a birthweight below the median followed by overweight at age 20 years was associated with a substantially increased risk of early type 2 diabetes (HR 6.07, 95% CI 5.08, 7.27), and a low birthweight (≤2.5 kg) combined with overweight at age 20 years was associated with a massive risk of early type 2 diabetes (HR 9.94, 95% CI 6.57, 15.05). CONCLUSIONS/INTERPRETATION: Low birthweight and overweight in young adulthood are the major developmental determinants of adult type 2 diabetes risk in men. They contribute in an additive manner to the risk of type 2 diabetes. To reduce the risk of type 2 diabetes, young adult overweight should be avoided, especially in boys with a low birthweight. DATA AVAILABILITY: The SPSS analysis code, the R analysis code and a data dictionary have been made available in an online repository ( https://osf.io/bx2as/ ).


Assuntos
Diabetes Mellitus Tipo 2 , Sobrepeso , Masculino , Adulto Jovem , Humanos , Adulto , Criança , Sobrepeso/epidemiologia , Sobrepeso/complicações , Diabetes Mellitus Tipo 2/complicações , Índice de Massa Corporal , Estudos de Coortes , Peso ao Nascer , Fatores de Risco
3.
Aging Clin Exp Res ; 36(1): 126, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842791

RESUMO

BACKGROUND: Low grip strength and gait speed are associated with mortality. However, investigation of the additional mortality risk explained by these measures, over and above other factors, is limited. AIM: We examined whether grip strength and gait speed improve discriminative capacity for mortality over and above more readily obtainable clinical risk factors. METHODS: Participants from the Health, Aging and Body Composition Study, Osteoporotic Fractures in Men Study, and the Hertfordshire Cohort Study were analysed. Appendicular lean mass (ALM) was ascertained using DXA; muscle strength by grip dynamometry; and usual gait speed over 2.4-6 m. Verified deaths were recorded. Associations between sarcopenia components and mortality were examined using Cox regression with cohort as a random effect; discriminative capacity was assessed using Harrell's Concordance Index (C-index). RESULTS: Mean (SD) age of participants (n = 8362) was 73.8(5.1) years; 5231(62.6%) died during a median follow-up time of 13.3 years. Grip strength (hazard ratio (95% CI) per SD decrease: 1.14 (1.10,1.19)) and gait speed (1.21 (1.17,1.26)), but not ALM index (1.01 (0.95,1.06)), were associated with mortality in mutually-adjusted models after accounting for age, sex, BMI, smoking status, alcohol consumption, physical activity, ethnicity, education, history of fractures and falls, femoral neck bone mineral density (BMD), self-rated health, cognitive function and number of comorbidities. However, a model containing only age and sex as exposures gave a C-index (95% CI) of 0.65(0.64,0.66), which only increased to 0.67(0.67,0.68) after inclusion of grip strength and gait speed. CONCLUSIONS: Grip strength and gait speed may generate only modest adjunctive risk information for mortality compared with other more readily obtainable risk factors.


Assuntos
Força da Mão , Sarcopenia , Velocidade de Caminhada , Humanos , Sarcopenia/mortalidade , Sarcopenia/fisiopatologia , Masculino , Idoso , Força da Mão/fisiologia , Feminino , Velocidade de Caminhada/fisiologia , Estudos de Coortes , Fatores de Risco , Valor Preditivo dos Testes , Idoso de 80 Anos ou mais , Mortalidade
4.
J Endocr Soc ; 8(3): bvae009, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38328478

RESUMO

Context: Recent preclinical studies reported that the BCL-2 inhibitor venetoclax can impair bone growth. A strategy to prevent such a side effect of this promising anticancer drug is highly desired. Earlier in vitro and in vivo studies suggested that the mitochondrial peptide humanin has the potential to prevent drug-induced growth impairment. Objective: We hypothesized that co-treatment with the humanin analog HNG may prevent venetoclax-induced bone growth impairment. Methods: Ex vivo studies were performed in fetal rat metatarsal bones and human growth plate samples cultured for 12 and 2 days, respectively, while in vivo studies were performed in young neuroblastoma mice being treated daily for 14 days. The treatment groups included venetoclax, HNG, venetoclax plus HNG, or vehicle. Bone growth was continuously monitored and at the end point, histomorphometric and immunohistochemical analyses were performed in fixed tissues. Results: Venetoclax suppressed metatarsal bone growth and when combined with HNG, bone growth was rescued and all histological parameters affected by venetoclax monotherapy were normalized. Mechanistic studies showed that HNG downregulated the pro-apoptotic proteins Bax and p53 in cultured metatarsals and human growth plate tissues, respectively. The study in a neuroblastoma mouse model confirmed a growth-suppressive effect of venetoclax treatment. In this short-term in vivo study, no significant bone growth-rescuing effect could be verified when testing HNG at a single dose. We conclude that humanin dose-dependently protects ex vivo cultured metatarsal bones from venetoclax-induced bone growth impairment by restoring the growth plate microstructure.

5.
Sci Rep ; 14(1): 5684, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454100

RESUMO

The link between antibodies and bone mass is debated. Activated IgG, which interacts directly with Fc gamma receptors, stimulates osteoclastogenesis in vitro, and local injection in immune-activated mice leads to bone loss. Multiple myeloma patients with high serum IgG levels have induced osteoclast activation and display bone loss. In addition, bone loss has been linked to serum autoantibodies in autoimmune diseases, including anti-citrullinated protein antibodies (ACPA) in individuals with rheumatoid arthritis (RA). Whether serum IgG or autoantibodies regulate bone mass under healthy conditions is poorly studied. In elderly men, neither serum levels of polyclonal IgG nor autoantibody were associated with areal bone mineral density in the MrOS Sweden study. Repetitive systemic injections of high-dose polyclonal IgG complexes in mice did not exert any discernible impact on bone mineral density. However, repetitive local intra-articular injection of the same IgG complexes led to a localized reduction of trabecular bone density. These results indicate antibodies may only impact bone density when close to the bone, such as within the synovial joint.


Assuntos
Artrite Reumatoide , Masculino , Humanos , Animais , Camundongos , Idoso , Artrite Reumatoide/metabolismo , Autoanticorpos , Anticorpos Antiproteína Citrulinada , Receptores de IgG/metabolismo , Imunoglobulina G
6.
Sci Rep ; 14(1): 12967, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839844

RESUMO

Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.


Assuntos
Densidade Óssea , Osso Esponjoso , Osteoblastos , Animais , Feminino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Osso Esponjoso/metabolismo , Osso Esponjoso/patologia , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Osteoporose/metabolismo
7.
Endocr Connect ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966483

RESUMO

Objective: Sex steroids exert important biological functions within the CNS, but the underlying mechanisms are poorly understood. The contribution of circulating sex steroids to the levels in CNS tissue and cerebrospinal fluid (CSF) has been sparsely investigated in human and with inconclusive results. This could partly be due to lack of sensitive validated assays. To address this, we validated a gas chromatography-tandem mass spectrometry (GC-MS/MS) assay for quantification of sex steroid hormones/precursors in CSF. Methods: GC-MS/MS quantification of dihydrotestosterone (DHT, CSF lower limit of quantification, 1.5 pg/mL), testosterone (4.9), estrone (E1, 0.88), estradiol (E2, 0.25), dehydroepiandrosterone (DHEA, 38.4), androstenedione (4D, 22.3), and progesterone (P, 4.2) in CSF, and corresponding serum samples from 47 men. Results: Analyses of CSF revealed that DHEA was the major sex steroid (73.5 ± 31.7 pg/mL) followed by 4D (61.4 ± 29.6 pg/mL) and testosterone (49.5 ± 18.9 pg/mL). The CSF levels of DHT, E2, and E1 were substantially lower, and P was in general not detectable in CSF. For all sex steroids except E2, strong associations between corresponding CSF and serum levels were observed. We propose that testosteronein CSF is derived from circulating testosterone, DHT in CSF is from local conversion from testosterone, while E2 in CSF is from local conversion from 4D in CNS. Conclusions: We describe the first thoroughly validated highly sensitive mass spectrometric assay for a broad sex steroid hormone panel suitable for human CSF. This assay constitutes a new tool for investigation of the role of sex steroid hormones in the human CNS. Significance statement: In this study, a fully validated highly sensitive mass spectrometric assay for sex steroids was applied to human CSF. The results were used to describe the relative contribution of peripheral circulating sex steroids together with locally transformation of sex steroids to the levels in CSF. The results are of importance to understand the biological processes of the human brain.

8.
J Bone Miner Res ; 39(1): 50-58, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38630877

RESUMO

Overt and subclinical hyperthyroidism are associated with an increased fracture risk, but whether thyroid hormones are associated with fracture risk in individuals with normal thyroid-stimulating hormone (TSH) has mostly been investigated in women. Therefore, we investigated if serum levels of free thyroxine (FT4) or TSH are associated with fracture risk in Swedish men. We followed (median 12.2 yr) elderly men (n = 1825; mean age 75, range 69-81 yr) participating in the Gothenburg and Malmö subcohorts of the prospective, population-based MrOS-Sweden study. The statistical analyses included Cox proportional hazards regression. Men receiving levothyroxine treatment were excluded. In our total cohort, serum FT4 (per SD increase) was associated with increased risk of major osteoporotic fractures (MOFs; n = 479; fully adjusted hazard ratio [HR] 1.14, 95% CI, 1.05-1.24) and hip fractures (n = 207; HR 1.18, 95% CI, 1.04-1.33). Also, in men with normal TSH (n = 1658), FT4 (per SD increase) was significantly associated with increased risk of MOF and hip fractures. Furthermore, men in the highest FT4 quartile had a 1.5-fold increase in hip fracture risk compared with men in the three lower FT4 quartiles, both in the total population and in men with normal TSH (fully adjusted: HR 1.45, 95% CI, 1.04-2.02 and HR 1.51, 95% CI, 1.07-2.12, respectively). In contrast, the risk of MOF was not statistically different in the highest FT4 quartile compared with the three lower FT4 quartiles. Finally, serum TSH was not associated with fracture risk after full adjustment for covariates. In conclusion, serum FT4, but not serum TSH, is a predictor of hip fracture risk in elderly Swedish men. Additionally, there was an association between FT4 (per SD increase) and the risk of MOF.


Assuntos
Fraturas do Quadril , Tiroxina , Masculino , Humanos , Feminino , Idoso , Estudos Prospectivos , Testes de Função Tireóidea , Fraturas do Quadril/epidemiologia , Tireotropina , Fatores de Risco
9.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793730

RESUMO

Age alters the host's susceptibility to immune induction. Humoral immunity with circulating antibodies, particularly immunoglobulin G (IgG), plays an essential role in immune response. IgG glycosylation in the fragment crystallizable (Fc) region, including sialylation, is important in regulating the effector function by interacting with Fc gamma receptors (FcγRs). Glycosylation is fundamentally changed with age and inflammatory responses. We aimed to explore the regulation of humoral immunity by comparing responses to antigen-induced immune challenges in young and adult mice using a local antigen-induced arthritis mouse model. This study examines the differences in immune response between healthy and immune-challenged states across these groups. Our initial assessment of the arthritis model indicated that adult mice presented more severe knee swelling than their younger counterparts. In contrast, we found that neither histological assessment, bone mineral density, nor the number of osteoclasts differs. Our data revealed an age-associated but not immune challenge increase in total IgG; the only subtype affected by immune challenge was IgG1 and partially IgG3. Interestingly, the sialylation of IgG2b and IgG3 is affected by age and immune challenges but not stimulated further by immune challenges in adult mice. This suggests a shift in IgG towards a pro-inflammatory and potentially pathogenic state with age and inflammation.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38570732

RESUMO

CONTEXT: Women with hypopituitarism remain at increased risk of morbidity and mortality. Insufficient replacement of sex steroids has been suggested as a contributing factor, but sex steroid levels in women with hypopituitarism have not been comprehensively mapped. OBJECTIVE: To quantify sex steroids in women with hypopituitarism by a high-sensitivity assay. METHODS: Using a combination of clinical and biochemical criteria, women with hypopituitarism (n = 104) who started growth hormone replacement 1995-2014 at a single center were categorized as eugonadal or having hypogonadotropic hypogonadism (HH). A population-based cohort of women (n = 288) served as controls. Eugonadal women and controls were categorized as pre-/postmenopausal and HH women as younger/older (≤ or >52 years). Dehydroepiandrosterone (DHEA), androstenedione, testosterone, dihydrotestosterone, progesterone, 17αOH-progesterone, estradiol and estrone were analyzed by a validated liquid chromatography-tandem mass spectrometry assay. RESULTS: Among both premenopausal/younger and postmenopausal/older women, women with HH had lower levels of sex steroid precursors (DHEA, androstenedione) and androgens (testosterone and dihydrotestosterone) than controls. Progesterone, 17αOH-progesterone, estrone and estradiol showed similar patterns. Women with HH and adrenocorticotropic hormone (ACTH) deficiency had markedly lower concentrations of all sex hormones than those without ACTH deficiency. CONCLUSION: This study demonstrates for the first time a broad and severe sex steroid deficiency in both younger and older women with HH, particularly in those with combined gonadotropin and ACTH deficiency. The health impact of low sex steroid levels in women with hypopituitarism requires further study and women with combined gonadotropin and ACTH deficiency should be a prioritized group for intervention studies with sex hormone replacement.

11.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38785348

RESUMO

Hydroxysteroid (17ß) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.


Assuntos
17-Hidroxiesteroide Desidrogenases , Camundongos Knockout , Testículo , Testosterona , Animais , Masculino , Testículo/metabolismo , Testículo/embriologia , Camundongos , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/deficiência , Feminino , Testosterona/sangue , Testosterona/metabolismo , Feto/metabolismo , Estradiol Desidrogenases/metabolismo , Estradiol Desidrogenases/genética
12.
NPJ Biofilms Microbiomes ; 10(1): 69, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143108

RESUMO

The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is unknown. We used Cox regression models to determine whether the GM composition is associated with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases, median follow-up time 18 years) with information on GM composition and functionality from shotgun metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard ratio [HR] 0.92 per standard deviation increase in Shannon index, 95% confidence interval 0.87-0.96). For beta diversity, the first principal component was associated with fracture risk (Aitchison distance, HR 0.90, 0.85-0.96). In predefined phyla analyses, we observed that the relative abundance of Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07-1.20), while the relative abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85-0.96). Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed that pathways related to amino acid metabolism and lipopolysaccharide biosynthesis associated with fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate synthesis. In conclusion, the overall GM composition was associated with incident fractures. The relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with increased fracture risk, while the relative abundance of Tenericutes was associated with decreased fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may underlie these associations.


Assuntos
Fraturas Ósseas , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Fraturas Ósseas/microbiologia , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/etiologia , Pessoa de Meia-Idade , Finlândia/epidemiologia , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma , Estudos de Coortes , Incidência , Metagenômica/métodos , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Fatores de Risco , Adulto
13.
J Bone Miner Res ; 39(3): 241-251, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477772

RESUMO

Femoral neck width (FNW) derived from DXA scans may provide a useful adjunct to hip fracture prediction. Therefore, we investigated whether FNW is related to hip fracture risk independently of femoral neck bone mineral density (FN-BMD), using a genetic approach. FNW was derived from points automatically placed on the proximal femur using hip DXA scans from 38 150 individuals (mean age 63.8 yr, 48.0% males) in UK Biobank (UKB). Genome-wide association study (GWAS) identified 71 independent genome-wide significant FNW SNPs, comprising genes involved in cartilage differentiation, hedgehog, skeletal development, in contrast to SNPs identified by FN-BMD GWAS which primarily comprised runx1/Wnt signaling genes (MAGMA gene set analyses). FNW and FN-BMD SNPs were used to generate genetic instruments for multivariable Mendelian randomization. Greater genetically determined FNW increased risk of all hip fractures (odds ratio [OR] 1.53; 95% CI, 1.29-1.82 per SD increase) and femoral neck fractures (OR 1.58;1.30-1.92), but not trochanteric or forearm fractures. In contrast, greater genetically determined FN-BMD decreased fracture risk at all 4 sites. FNW and FN-BMD SNPs were also used to generate genetic risk scores (GRSs), which were examined in relation to incident hip fracture in UKB (excluding the FNW GWAS population; n = 338 742, 3222 cases) using a Cox proportional hazards model. FNW GRS was associated with increased risk of all incident hip fractures (HR 1.08;1.05-1.12) and femoral neck fractures (hazard ratio [HR] 1.10;1.06-1.15), but not trochanteric fractures, whereas FN-BMD GRS was associated with reduced risk of all hip fracture types. We conclude that the underlying biology regulating FNW and FN-BMD differs, and that DXA-derived FNW is causally related to hip fractures independently of FN-BMD, adding information beyond FN-BMD for hip fracture prediction. Hence, FNW derived from DXA analyses or a FNW GRS may contribute clinically useful information beyond FN-BMD for hip fracture prediction.


Femoral neck width (FNW) derived from DXA scans may provide useful information about hip fracture prediction, over and above that provided by BMD measurements. Therefore, we investigated whether FNW is related to hip fracture risk independently of BMD, using a genetic approach. FNW was derived from points automatically placed on the hip in DXA scans obtained from 38 150 individuals (mean age 63.8 yr, 48.0% males) in UK Biobank. Seventy-one distinct genetic factors were found to be associated with FNW. Individuals who were predicted by their genes to have greater FNW had a higher risk of hip but not forearm fractures. In contrast, those with greater genetically determined BMD of the femoral neck had a lower risk of both hip and forearm fractures. We conclude that the underlying biology regulating FNW and BMD of the femoral neck differs, and that FNW derived from DXA analyses may contribute clinically useful information beyond BMD for hip fracture prediction.


Assuntos
Fraturas do Colo Femoral , Fraturas do Quadril , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Colo do Fêmur , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/genética , Fraturas do Colo Femoral/genética , Absorciometria de Fóton/efeitos adversos , Fatores de Risco , Densidade Óssea/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-38753869

RESUMO

CONTEXT: Increased standing time has been associated with improved health, but the underlying mechanism is unclear. OBJECTIVES: We herein investigate if increased weight loading increases energy demand and thereby glucose uptake (GU) locally in bone and/or muscle in the lower extremities. METHODS: In this single-center clinical trial with randomized crossover design (ClinicalTrials.gov ID, NCT05443620), we enrolled 10 men with body mass index (BMI) between 30 and 35 kg/m2. Participants were treated with both high load (standing with weight vest weighing 11% of body weight) and no load (sitting) on the lower extremities. GU was measured using whole-body quantitative positron emission tomography/computed tomography (PET/CT) imaging. The primary endpoint was the change in GU ratio between loaded bones (i.e. femur and tibia) and non-loaded bones (i.e. humerus). RESULTS: High load increased the GU ratio between lower and upper extremities in cortical diaphyseal bone (e.g. femur/humerus ratio increased by 19%, p = 0.029), muscles (e.g. m. quadriceps femoris/m. triceps brachii ratio increased by 28%, p = 0.014) and in certain bone marrow regions (femur/humerus diaphyseal bone marrow region ratio increased by 17%, p = 0.041). Unexpectedly, we observed the highest GU in the bone marrow region of vertebral bodies, but its GU was not affected by high load. CONCLUSIONS: Increased weight-bearing loading enhances GU in muscles, cortical bone, and bone marrow of the exposed lower extremities. This could be interpreted as increased local energy demand in bone and muscle caused by increased loading. The physiological importance of the increased local GU by static loading remains to be determined.

15.
Bone ; 188: 117223, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111379

RESUMO

Tartrate-resistant acid phosphatase (TRAP) serum levels reflect osteoclast number, bone remodeling activity, and fracture risk. Deletion or loss of function of TRAP results in short stature in mice and man. Yet, the impact and mechanisms of TRAP for the site- and sex-specific development of bone and cartilage is not well understood. Here, we use a global TRAP knockout (TRAPKO) and wildtype littermate control (WT) mice of both sexes to investigate TRAP as a possible sex- and site-specific regulator of bone and growth plate development. TRAPKO mice of both sexes weighed less and had shorter tibial length than their WT, features that were more accentuated in male than female TRAPKO mice. These changes were not associated with a general reduction in growth as not all organs displayed a proportionally lower mass, and serum IGF-1 was unchanged. Using µCT and site-specificity analysis of the cortical bone revealed wider proximal tibia, a higher trabecular thickness, and lower trabecular separation in male TRAPKO compared to WT mice, an effect not seen in female mice. Histomorphometric analysis revealed that the growth plate height as well as height of terminal hypertrophic chondrocytes were markedly increased, and the number of columns was decreased in TRAPKO mice of both sexes. These effects were more accentuated in female mice. Proliferation and differentiation of bone marrow derived macrophages into osteoclasts, as well as C-terminal cross links were normal in TRAPKO mice of both sexes. Collectively, our results show that TRAP regulates bone and cartilage development in a sex-and site-specific manner in mice.

16.
Adv Sci (Weinh) ; : e2309429, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075722

RESUMO

Women with polycystic ovary syndrome (PCOS) exhibit sustained elevation in circulating androgens during pregnancy, an independent risk factor linked to pregnancy complications and adverse outcomes in offspring. Yet, further studies are required to understand the effects of elevated androgens on cell type-specific placental dysfunction and fetal development. Therefore, a PCOS-like mouse model induced by continuous androgen exposure is examined. The PCOS-mice exhibited impaired placental and embryonic development, resulting in mid-gestation lethality. Co-treatment with the androgen receptor blocker, flutamide, prevents these phenotypes including germ cell specification . Comprehensive profiling of the placenta by whole-genome bisulfite and RNA sequencing shows a reduced proportion of trophoblast precursors, possibly due to the downregulation of Cdx2 expression. Reduced expression of Gcm1, Synb, and Prl3b1 is associated with reduced syncytiotrophoblasts and sinusoidal trophoblast giant cells, impairs placental labyrinth formation. Importantly, human trophoblast organoids exposed to androgens exhibit analogous changes, showing impaired trophoblast differentiation as a key feature in PCOS-related pregnancy complications. These findings provide new insights into the potential cellular targets for future treatments.

17.
Nat Aging ; 4(8): 1064-1075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802582

RESUMO

As there are effective treatments to reduce hip fractures, identification of patients at high risk of hip fracture is important to inform efficient intervention strategies. To obtain a new tool for hip fracture prediction, we developed a protein-based risk score in the Cardiovascular Health Study using an aptamer-based proteomic platform. The proteomic risk score predicted incident hip fractures and improved hip fracture discrimination in two Trøndelag Health Study validation cohorts using the same aptamer-based platform. When transferred to an antibody-based proteomic platform in a UK Biobank validation cohort, the proteomic risk score was strongly associated with hip fractures (hazard ratio per s.d. increase, 1.64; 95% confidence interval 1.53-1.77). The proteomic risk score, but not available polygenic risk scores for fractures or bone mineral density, improved the C-index beyond the fracture risk assessment tool (FRAX), which integrates information from clinical risk factors (C-index, FRAX 0.735 versus FRAX + proteomic risk score 0.776). The developed proteomic risk score constitutes a new tool for stratifying patients according to hip fracture risk; however, its improvement in hip fracture discrimination is modest and its clinical utility beyond FRAX with information on femoral neck bone mineral density remains to be determined.


Assuntos
Proteínas Sanguíneas , Fraturas do Quadril , Proteômica , Humanos , Fraturas do Quadril/sangue , Fraturas do Quadril/epidemiologia , Feminino , Masculino , Medição de Risco/métodos , Proteômica/métodos , Idoso , Fatores de Risco , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Pessoa de Meia-Idade , Densidade Óssea
18.
J Bone Miner Res ; 39(2): 139-149, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477735

RESUMO

Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.


Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. To increase the understanding of the underlying mechanisms, we performed a meta-analysis of the associations between 4860 circulating proteins and risk of fractures using two large cohorts, including 6430 participants with 643 incident hip fractures. We identified 23 proteins/aptamers associated with incident hip fractures. Two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR were most strongly associated with hip fracture risk. High levels of several inflammation-related proteins were also associated with increased hip fracture risk. Pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. Future mechanistic studies should investigate the underlying biology of these novel protein biomarkers which may be potential drug targets.


Assuntos
Fraturas do Quadril , Proteoma , Humanos , Fraturas do Quadril/sangue , Fraturas do Quadril/epidemiologia , Proteoma/metabolismo , Feminino , Masculino , Incidência , Idoso , Proteínas Sanguíneas/metabolismo , Fatores de Risco
19.
Trends Endocrinol Metab ; 35(6): 478-489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553405

RESUMO

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.


Assuntos
Fenótipo , Animais , Humanos , Músculo Esquelético/metabolismo , Peixe-Zebra , Camundongos , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Doenças Musculoesqueléticas/fisiopatologia , Doenças Musculoesqueléticas/genética , Osteoporose/metabolismo , Osteoporose/patologia
20.
Lancet Rheumatol ; 1(3): e154-e162, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38229392

RESUMO

BACKGROUND: Postmenopausal bone loss in the spine is associated with an increased risk of vertebral fractures. Certain probiotic treatment protects rodents from ovariectomy-induced bone loss. The aim of the present study was to determine if treatment with a combination of three bacterial strains protects against the rapid spine bone loss occurring in healthy early postmenopausal women. METHODS: This randomised, double-blind, placebo-controlled, multicentre trial was done at four study centres in Sweden. Early postmenopausal women were randomly assigned in a 1:1 ratio to receive probiotic treatment consisting of three Lactobacillus strains (Lactobacillus paracasei DSM 13434, Lactobacillus plantarum DSM 15312, and Lactobacillus plantarum DSM 15313; 1 x 1010 colony-forming units per capsule) or placebo once daily for 12 months. The primary outcome was the percentage change from baseline in lumbar spine bone mineral density (LS-BMD) at 12 months. The primary analysis was done in all participants with BMD measurements available both at baseline and at 12 months. Analyses of adverse events and safety included all participants who had taken at least one capsule of placebo or Lactobacillus. This trial is registered with ClinicalTrials.gov, NCT02722980, and is completed. FINDINGS: Between April 18 and Nov 11, 2016, 249 participants were randomly assigned to receive probiotic product or placebo, and 234 (94%) completed the analyses required for the primary outcome. Lactobacillus treatment reduced the LS-BMD loss compared with placebo (mean difference 0·71%, 95% CI 0·06 to 1·35). The LS-BMD loss was significant in the placebo group (-0·72%, -1·22 to -0·22), whereas no bone loss was observed in the Lactobacillus-treated group (-0·01%, -0·50 to 0·48). The adverse events were similar between the two groups. INTERPRETATION: Probiotic treatment using a mix of three Lactobacillus strains protects against lumbar spine bone loss in healthy postmenopausal women. FUNDING: Probi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA