Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 173: 103913, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004162

RESUMO

Schizophyllum commune is a mushroom-forming fungus notable for its distinctive fruiting bodies with split gills. It is used as a model organism to study mushroom development, lignocellulose degradation and mating type loci. It is a hypervariable species with considerable genetic and phenotypic diversity between the strains. In this study, we systematically phenotyped 16 dikaryotic strains for aspects of mushroom development and 18 monokaryotic strains for lignocellulose degradation. There was considerable heterogeneity among the strains regarding these phenotypes. The majority of the strains developed mushrooms with varying morphologies, although some strains only grew vegetatively under the tested conditions. Growth on various carbon sources showed strain-specific profiles. The genomes of seven monokaryotic strains were sequenced and analyzed together with six previously published genome sequences. Moreover, the related species Schizophyllum fasciatum was sequenced. Although there was considerable genetic variation between the genome assemblies, the genes related to mushroom formation and lignocellulose degradation were well conserved. These sequenced genomes, in combination with the high phenotypic diversity, will provide a solid basis for functional genomics analyses of the strains of S. commune.


Assuntos
Variação Genética , Genoma Fúngico , Genótipo , Lignina , Fenótipo , Schizophyllum , Schizophyllum/genética , Schizophyllum/crescimento & desenvolvimento , Schizophyllum/classificação , Lignina/metabolismo , Genoma Fúngico/genética , Filogenia , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Agaricales/classificação , Análise de Sequência de DNA
2.
Microbiol Resour Announc ; 13(3): e0115323, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38385672

RESUMO

We sequenced and annotated the genomes of the ascomycete fungi Trichoderma harzianum, Trichoderma aggressivum f. europaeum, and Purpureocillium lilacinum. Moreover, we developed a website to allow users to interactively analyze the assemblies, gene predictions, and functional annotations of these species and 70+ previously sequenced fungi.

3.
Microbiol Res ; 284: 127736, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663231

RESUMO

Blue light is an important signal for fungal development. In the mushroom-forming basidiomycete Schizophyllum commune, blue light is detected by the White Collar complex, which consists of WC-1 and WC-2. Most of our knowledge on this complex is derived from the ascomycete Neurospora crassa, where both WC-1 and WC-2 contain GATA zinc-finger transcription factor domains. In basidiomycetes, WC-1 is truncated and does not contain a transcription factor domain, but both WC-1 and WC-2 are still important for development. We show that dimerization of WC-1 and WC-2 happens independent of light in S. commune, but that induction by light is required for promoter binding by the White Collar complex. Furthermore, the White Collar complex is a promoter of transcription, but binding of the complex alone is not always sufficient to initiate transcription. For its function, the White Collar complex associates directly with the promoters of structural genes involved in mushroom development, like hydrophobins, but also promotes the expression of other transcription factors that play a role in mushroom development.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Schizophyllum , Fatores de Transcrição , Schizophyllum/metabolismo , Schizophyllum/genética , Schizophyllum/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Luz , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Ligação Proteica , Agaricales/genética , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA