Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 39(10): 4136-50, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21288884

RESUMO

Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼ 70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revealed a region between the RPS5 upstream activating sequence (UAS) and core promoter, termed the intervening region (IVR), responsible for strong Hmo1 binding and an upstream TSS shift in Δhmo1 cells. Chromatin immunoprecipitation analyses showed that the RPS5-IVR resides within a nucleosome-free region and that pre-initiation complex (PIC) assembly occurs at a site between the IVR and a nucleosome overlapping the TSS (+1 nucleosome). The PIC assembly site was shifted upstream in Δhmo1 cells on this promoter, indicating that Hmo1 normally masks the RPS5-IVR to prevent PIC assembly at inappropriate site(s). This novel mechanism ensures accurate transcriptional initiation by delineating the 5'- and 3'-boundaries of the PIC assembly zone.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Deleção de Genes , Proteínas de Grupo de Alta Mobilidade/genética , Mutação , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição TFII/genética , Sítio de Iniciação de Transcrição
2.
Microbiol Spectr ; 10(2): e0191521, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234490

RESUMO

Standardization and quality assurance of microbiome community analysis by high-throughput DNA sequencing require widely accessible and well-characterized reference materials. Here, we report on newly developed DNA and whole-cell mock communities to serve as control reagents for human gut microbiota measurements by shotgun metagenomics and 16S rRNA gene amplicon sequencing. The mock communities were formulated as near-even blends of up to 20 bacterial species prevalent in the human gut, span a wide range of genomic guanine-cytosine (GC) contents, and include multiple strains with Gram-positive type cell walls. Through a collaborative study, we carefully characterized the mock communities by shotgun metagenomics, using previously developed standardized protocols for DNA extraction and sequencing library construction. Further, we validated fitness of the mock communities for revealing technically meaningful differences among protocols for DNA extraction and metagenome/16S rRNA gene amplicon library construction. Finally, we used the mock communities to reveal varying performance of metagenome-based taxonomic profilers and the impact of trimming and filtering of sequencing reads on observed species profiles. The latter showed that aggressive preprocessing of reads may result in substantial GC-dependent bias and should thus be carefully evaluated to minimize unintended effects on species abundances. Taken together, the mock communities are expected to support a myriad of applications that rely on well-characterized control reagents, ranging from evaluation and optimization of methods to assessment of reproducibility in interlaboratory studies and routine quality control. IMPORTANCE Application of high-throughput DNA sequencing has greatly accelerated human microbiome research and its translation into new therapeutic and diagnostic capabilities. Microbiome community analyses results can, however, vary considerably across studies or laboratories, and establishment of measurement standards to improve accuracy and reproducibility has become a priority. The here-developed mock communities, which are available from the NITE Biological Resource Center (NBRC) at the National Institute of Technology and Evaluation (NITE, Japan), provide well-characterized control reagents that allow users to judge the accuracy of their measurement results. Widespread and consistent adoption of the mock communities will improve reproducibility and comparability of microbiome community analyses, thereby supporting and accelerating human microbiome research and development.


Assuntos
Microbiota , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Indicadores e Reagentes , Metagenômica/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
3.
Genes Cells ; 15(12): 1169-88, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20977549

RESUMO

In Saccharomyces cerevisiae, TFIID, which is composed of TATA-binding protein (TBP) and a set of TBP-associated factors (TAFs), mediates the transcription of most class II genes. Previous studies have shown that CLN2 expression was significantly reduced by taf1-ts2, but not by taf1-N568Δ, although both mutations display similar temperature-sensitive growth phenotypes and transcriptional defects in other genes. Here, we show that the reduced expression of CLN2 is not because of differences in taf1 alleles in the previous experiments but because of allelic differences at the SSD1 locus in the host strains. Specifically, ssd1-d reduces CLN2 expression when combined with taf1. Ssd1p expressed from SSD1-V, but not from ssd1-d, stabilizes a subpopulation of CLN2 mRNA in wild-type and taf1-N568Δ strains and facilitates the continuous transcription of CLN2 after heat shock in the taf1-N568Δ strain. Reporter assays show that both activities appear to depend on the 5'-untranslated region of CLN2 mRNA and that Ssd1p binds to this region via its amino- and carboxy-terminal domains. Based on these observations, we propose a model for the action of Ssd1p and discuss its biologic role.


Assuntos
Regiões 5' não Traduzidas/genética , Ciclinas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Ciclinas/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese
4.
Microbiome ; 9(1): 95, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33910647

RESUMO

BACKGROUND: Validation and standardization of methodologies for microbial community measurements by high-throughput sequencing are needed to support human microbiome research and its industrialization. This study set out to establish standards-based solutions to improve the accuracy and reproducibility of metagenomics-based microbiome profiling of human fecal samples. RESULTS: In the first phase, we performed a head-to-head comparison of a wide range of protocols for DNA extraction and sequencing library construction using defined mock communities, to identify performant protocols and pinpoint sources of inaccuracy in quantification. In the second phase, we validated performant protocols with respect to their variability of measurement results within a single laboratory (that is, intermediate precision) as well as interlaboratory transferability and reproducibility through an industry-based collaborative study. We further ascertained the performance of our recommended protocols in the context of a community-wide interlaboratory study (that is, the MOSAIC Standards Challenge). Finally, we defined performance metrics to provide best practice guidance for improving measurement consistency across methods and laboratories. CONCLUSIONS: The validated protocols and methodological guidance for DNA extraction and library construction provided in this study expand current best practices for metagenomic analyses of human fecal microbiota. Uptake of our protocols and guidelines will improve the accuracy and comparability of metagenomics-based studies of the human microbiome, thereby facilitating development and commercialization of human microbiome-based products. Video Abstract.


Assuntos
Metagenômica , Microbiota , DNA , Humanos , Microbiota/genética , Padrões de Referência , Reprodutibilidade dos Testes , Análise de Sequência de DNA
6.
PLoS One ; 10(5): e0124655, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951460

RESUMO

For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients.


Assuntos
Povo Asiático/genética , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Complemento C3/genética , Ensaio de Atividade Hemolítica de Complemento/métodos , Mutação , Animais , Anticorpos Monoclonais/metabolismo , Síndrome Hemolítico-Urêmica Atípica/genética , Síndrome Hemolítico-Urêmica Atípica/imunologia , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Diagnóstico Precoce , Eritrócitos/imunologia , Feminino , Predisposição Genética para Doença , Humanos , Japão , Masculino , Polimorfismo de Fragmento de Restrição , Ovinos/sangue , Ovinos/imunologia
7.
Nat Struct Mol Biol ; 20(8): 1008-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851461

RESUMO

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Fatores Associados à Proteína de Ligação a TATA/química , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIID/química , Transcrição Gênica/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cristalização , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo
8.
Genetics ; 188(4): 871-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21625000

RESUMO

In diploid Saccharomyces cerevisiae cells, bud-site selection is determined by two cortical landmarks, Bud8p and Bud9p, at the distal and proximal poles, respectively. Their localizations depend on the multigenerational proteins Rax1p/Rax2p. Many genes involved in bud-site selection were identified previously by genome-wide screening of deletion mutants, which identified BUD32 that causes a random budding in diploid cells. Bud32p is an atypical kinase involved in a signaling cascade of Sch9p kinase, the yeast homolog of Akt/PKB, and a component of the EKC/KEOPS (endopeptidase-like, kinase, chromatin-associated/kinase, putative endopeptidase, and other proteins of small size) complex that functions in telomere maintenance and transcriptional regulation. However, its role in bipolar budding has remained unclear. In this report, we show that the Sch9p kinase cascade does not affect bipolar budding but that the EKC/KEOPS complex regulates the localization of Bud9p. The kinase activity of Bud32p, which is essential for the functions of the EKC/KEOPS complex but is not necessary for the Sch9p signaling cascade, is required for bipolar bud-site selection. BUD9 is necessary for random budding in each deletion mutant of EKC/KEOPS components, and RAX2 is genetically upstream of EKC/KEOPS genes for the regulation of bipolar budding. The asymmetric localization of Bud9p was dependent on the complex, but Bud8p and Rax2p were not. We concluded that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization downstream of Rax1p/Rax2p.


Assuntos
Polaridade Celular , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Polaridade Celular/genética , Ativação Enzimática/fisiologia , Deleção de Genes , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA