Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146503

RESUMO

CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.

2.
J Neurosci ; 39(45): 8877-8884, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31558618

RESUMO

Alcohol use is highly prevalent in the United States and across the world, and every year millions of people suffer from alcohol use disorders (AUDs). Although the genetic contribution to developing AUDs is estimated to be 50-60%, many of the underlying molecular mechanisms remain unclear. Previous studies from our laboratory revealed that Drosophila melanogaster lacking RhoGAP18B and Ras Suppressor 1 (Rsu1) display reduced sensitivity to ethanol-induced sedation. Both Rsu1 and RhoGAP18B are negative regulators of the small Rho-family GTPase, Rac1, a modulator of actin dynamics. Here we investigate the role of Rac1 and its downstream target, the actin-severing protein cofilin, in alcohol consumption preference. We show that these two regulators of actin dynamics can alter male experience-dependent alcohol preference in a bidirectional manner: expressing either activated Rac1 or dominant-negative cofilin in the mushroom bodies (MBs) abolishes experience-dependent alcohol preference. Conversely, dominant-negative Rac1 or activated cofilin MB expression lead to faster acquisition of alcohol preference. Our data show that Rac1 and cofilin activity are key to determining the rate of acquisition of alcohol preference, revealing a critical role of actin dynamics regulation in the development of voluntary self-administration in DrosophilaSIGNIFICANCE STATEMENT The risks for developing an alcohol use disorder (AUD) are strongly determined by genetic factors. Understanding the genes and molecular mechanisms that contribute to that risk is therefore a necessary first step for the development of targeted therapeutic intervention. Here we show that regulators of actin cytoskeleton dynamics can bidirectionally determine the acquisition rate of alcohol self-administration, highlighting this process as a key mechanism contributing to the risk of AUD development.


Assuntos
Citoesqueleto de Actina/metabolismo , Alcoolismo/genética , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Corpos Pedunculados/metabolismo , Proteínas rac de Ligação ao GTP/genética , Fatores de Despolimerização de Actina/metabolismo , Alcoolismo/metabolismo , Animais , Condicionamento Clássico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Proteínas dos Microfilamentos/metabolismo , Corpos Pedunculados/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(30): E4085-93, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170296

RESUMO

Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas de Drosophila/fisiologia , Fatores de Transcrição/fisiologia , Actinas/metabolismo , Adolescente , Adulto , Animais , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo , Criança , Estudos de Coortes , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Etanol/química , Feminino , GTP Fosfo-Hidrolases/metabolismo , Genes Dominantes , Humanos , Integrinas/metabolismo , Masculino , Mutação , Neurônios/metabolismo , Polimorfismo Genético , Inquéritos e Questionários , Fatores de Transcrição/genética
4.
Addict Biol ; 19(3): 392-401, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24164972

RESUMO

To understand the molecular and neural mechanisms underlying alcohol addiction, many models ranging from vertebrates to invertebrates have been developed. In Drosophila melanogaster, behavioral paradigms from assaying acute responses to alcohol and to behaviors more closely modeling addiction have emerged in recent years. However, both the CAFÉ assay, similar to a two-bottle choice consumption assay, as well as conditioned odor preference, where ethanol is used as the reinforcer, are labor intensive and have low throughput. To address this limitation, we have established a novel ethanol consumption preference assay, called FRAPPÉ, which allows for fast, high throughput measurement of consumption in individual flies, using a fluorescence plate reader. We show that naïve flies do not prefer to consume ethanol, but various pre-exposures, such as ethanol vapor or voluntary ethanol consumption, induce ethanol preference. This ethanol-primed preference is long lasting and is not driven by calories contained in ethanol during the consumption choice. Our novel experience-dependent model of ethanol preference in Drosophila-a highly genetically tractable organism-therefore recapitulates salient features of human alcohol abuse and will facilitate the molecular understanding of the development of alcohol preference.


Assuntos
Alcoolismo/fisiopatologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Psicológico/efeitos dos fármacos , Drosophila melanogaster , Ingestão de Energia/fisiologia , Etanol/administração & dosagem , Comportamento Alimentar/efeitos dos fármacos , Masculino , Fatores de Tempo
5.
Rev Neurosci ; 24(5): 471-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24077615

RESUMO

Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.


Assuntos
Citoesqueleto de Actina/metabolismo , Comportamento Animal/fisiologia , Animais , Moléculas de Adesão Celular/metabolismo , Drosophila , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Sinapses/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Elife ; 92020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286230

RESUMO

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Transmissão Sináptica/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Drosophila , Proteínas de Drosophila/metabolismo
7.
Cell Rep ; 28(7): 1799-1813.e5, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412248

RESUMO

The Alzheimer's disease (AD) susceptibility gene, CD2-associated protein (CD2AP), encodes an actin binding adaptor protein, but its function in the nervous system is largely unknown. Loss of the Drosophila ortholog cindr enhances neurotoxicity of human Tau, which forms neurofibrillary tangle pathology in AD. We show that Cindr is expressed in neurons and present at synaptic terminals. cindr mutants show impairments in synapse maturation and both synaptic vesicle recycling and release. Cindr associates and genetically interacts with 14-3-3ζ, regulates the ubiquitin-proteasome system, and affects turnover of Synapsin and the plasma membrane calcium ATPase (PMCA). Loss of cindr elevates PMCA levels and reduces cytosolic calcium. Studies of Cd2ap null mice support a conserved role in synaptic proteostasis, and CD2AP protein levels are inversely related to Synapsin abundance in human postmortem brains. Our results reveal CD2AP neuronal requirements with relevance to AD susceptibility, including for proteostasis, calcium handling, and synaptic structure and function.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Proteostase , Proteínas 14-3-3/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Neurônios/citologia , Proteoma/análise , Proteoma/metabolismo , Transmissão Sináptica
8.
PLoS One ; 10(9): e0137465, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366560

RESUMO

Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila's sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Álcoois/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas Ativadoras de GTPase/metabolismo , Hipnóticos e Sedativos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Drosophila melanogaster/citologia , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Animais , Isoformas de Proteínas/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA