Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400788, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728155

RESUMO

Organic batteries are one of the possible routes for transitioning to sustainable energy storage solutions. However, the recycling of organic batteries, which is a key step toward circularity, is not easily achieved. This work shows the direct recycling of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl) (PTMA) and poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl acrylamide) (PTAm) based composite electrodes. After charge-discharge cycling, the electrodes are deconstructed using a solubilizing-solvent and then reconstructed using a casting-solvent. The electrochemical properties of the original and recycled electrodes are compared using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) cycling, from which it is discovered using time-of-flight secondary ion mass spectrometry (ToF-SIMS) that recycling can be challenged by the formation of a cathode electrolyte interphase (CEI). In turn, an additive is proposed to modify the CEI layer and improve the properties after recycling. Last, an anionic rocking chair battery consisting of PTAm electrodes as both positive and negative electrodes is demonstrated, in which the electrodes are recycled to form a new battery. This work demonstrates the recycling of composite electrodes for organic batteries and provides insights into the challenges and possible solutions for recycling the next-generation electrochemical energy storage devices.

2.
ACS Appl Mater Interfaces ; 14(25): 29176-29187, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700347

RESUMO

Ionically conducting, porous separator membranes with submicrometer size pores play an important role in governing the outcome of lithium-ion batteries (LIBs) in terms of life, safety, and effective transport of ions. Though the polyolefin membranes have dominated the commercial segment for the past few decades, to develop next-generation batteries with high-energy density, high capacity, and enhanced safety, there is a need to develop advanced separators with superior thermal stability, electrolyte interfacial capabilities, high melting temperature, and mechanical stability at elevated temperatures. Here, aramid nanofiber separators with enhanced mechanical and thermal stability dried at the critical point are processed and tested for mechanical strength, wettability, electrochemical performance, and thermal safety aspects in LIBs. These separators outperform Celgard polypropylene in all aspects such as delivering a high Young's modulus of 6.9 ± 1.1 GPa, and ultimate tensile strength of 170 ± 25 MPa. At 40 and 25 °C, stable 200 and 300 cycles with 10% and 11% capacity fade were obtained at 1 C rate, respectively. Multimode calorimetry, specially designed to study thermal safety aspects of LIB coin cells, demonstrates low exothermicity for critical-point-dried aramid nanofiber separators, and post-diagnosis illustrates preservation of structural integrity up to 300 °C, depicting possibilities of developing advanced safer, high-performance LIBs.

3.
ACS Polym Au ; 2(4): 287-298, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35971421

RESUMO

Water existing within thin polyelectrolyte multilayer (PEM) films has significant influence on their physical, chemical, and thermal properties, having implications for applications including energy storage, smart coatings, and biomedical systems. Ionic strength, salt type, and terminating layer are known to influence PEM swelling. However, knowledge of water's microenvironment within a PEM, whether that water is affiliated with intrinsic or extrinsic ion pairs, remains lacking. Here, we examine the influence of both assembly and post-assembly conditions on the water-ion pair interactions of poly(styrene sulfonate)/poly(diallyldimethylammonium) (PSS/PDADMA) PEMs in NaCl and KBr. This is accomplished by developing a methodology in which quartz crystal microbalance with dissipation monitoring is applied to estimate the number of water molecules affiliated with an ion pair (i), as well as the hydration coefficient, πsalt H2O. PSS/PDADMA PEMs are assembled in varying ionic strengths of either NaCl and KBr and then exposed post-assembly to increasing ionic strengths of matching salt type. A linear relationship between the total amount of water per intrinsic ion pair and the post-assembly salt concentration was obtained at post-assembly salt concentrations >0.5 M, yielding estimates for both i and πsalt H2O. We observe higher values of i and πsalt H2O in KBr-assembled PEMs due to KBr being more effective in doping the assembly because of KBr's more chaotropic nature as compared to NaCl. Lastly, when PSS is the terminating layer, i decreases in value due to PSS's hydrophobic nature. Classical and ab initio molecular dynamics provide a microstructural view as to how NaCl and KBr interact with individual polyelectrolytes and the involved water shells. Put together, this study provides further insight into the understanding of existing water microenvironments in PEMs and the effects of both assembly and post-assembly conditions.

4.
ACS Appl Mater Interfaces ; 13(29): 34807-34817, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34256563

RESUMO

Structural batteries and supercapacitors combine energy storage and structural functionalities in a single unit, leading to lighter and more efficient electric vehicles. However, conventional electrodes for batteries and supercapacitors are optimized for high energy storage and suffer from poor mechanical properties. More specifically, commercial lithium-ion battery anodes and cathodes demonstrate tensile strength values <4 MPa and Young's modulus of <1 GPa. Here, we show that using branched aramid nanofibers (BANFs) or nanoscale Kevlar fibers as a binder leads to mechanically stronger lithium-ion battery electrodes. BANFs are combined with lithium iron phosphate (LFP, cathode) or silicon (Si, anode) particles and reduced graphene oxide (rGO). Hydrogen-bonding interactions between rGO and BANFs are harnessed to accommodate load transfer within the nanocomposite electrodes. Overall, we obtained up to 2 orders of magnitude improvements in Young's modulus and tensile strength compared to commercial battery electrodes while maintaining good energy storage capabilities. This work demonstrates an efficient route for designing structural lithium-ion battery cathodes and anodes with enhanced mechanical properties using BANFs as a binder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA