Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Breed Sci ; 61(5): 625-30, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136501

RESUMO

The peanut stunt virus (PSV) causes yield losses in soybean and reduced seed quality due to seed mottling. The objectives of this study were to determine the phenotypic reactions of soybean germplasms to inoculation with two PSV isolates (PSV-K, PSV-T), the inheritance of PSV resistance in soybean cultivars, and the locus of the PSV resistance gene. We investigated the PSV resistance of 132 soybean cultivars to both PSV isolates; of these, 73 cultivars exhibited resistance to both PSV isolates. Three resistant cultivars (Harosoy, Tsurunotamago 1 and Hyuga) were crossed with the susceptible cultivar Enrei. The crosses were evaluated in the F(1), F(2) and F(2:3) generations for their reactions to inoculation with the two PSV isolates. In an allelism test, we crossed Harosoy and Tsurunotamago 1 with the resistant cultivar Hyuga. The results revealed that PSV resistance in these cultivars is controlled by a single dominant gene at the same locus. We have proposed Rpsv1, as the name of the resistance gene in Hyuga. We also constructed a linkage map using recombinant inbred lines between Hyuga × Enrei using 176 SSR markers. We mapped Rpsv1 near the Satt435 locus on soybean chromosome 7.

2.
Breed Sci ; 61(5): 653-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136505

RESUMO

'Enrei' is the second leading variety of soybean (Glycine max (L.) Merr.) in Japan. Its cultivation area is mainly restricted to the Hokuriku region. In order to expand the adaptability of 'Enrei', we developed two near-isogenic lines (NILs) of 'Enrei' for the dominant alleles controlling late flowering at the maturity loci, E2 and E3, by backcrossing with marker-assisted selection. The resultant NILs and the original variety were evaluated for flowering, maturity, seed productivity and other agronomic traits in five different locations. Expectedly, NILs with E2 or E3 alleles flowered later than the original variety in most locations. These NILs produced comparatively larger plants in all locations. Seed yields were improved by E2 and E3 in the southern location or in late-sowing conditions, whereas the NIL for E2 exhibited almost the same or lower productivity in the northern locations due to higher degrees of lodging. Seed quality-related traits, such as 100-seed weight and protein content, were not significantly different between the original variety and its NILs. These results suggest that the modification of genotypes at maturity loci provides new varieties that are adaptive to environments of different latitudes while retaining almost the same seed quality as that of the original.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA