Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Appl Environ Microbiol ; 80(14): 4301-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814785

RESUMO

The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to 10(6) normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.


Assuntos
Trato Gastrointestinal/microbiologia , Variação Genética , Microbiota , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/microbiologia , Animais , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose , Uganda , Wigglesworthia/genética , Wigglesworthia/isolamento & purificação
2.
BMC Evol Biol ; 13: 31, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23384159

RESUMO

BACKGROUND: Wolbachia pipientis, a diverse group of α-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). RESULTS: MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). CONCLUSIONS: High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda.


Assuntos
Variação Genética , Genética Populacional , Moscas Tsé-Tsé/microbiologia , Wolbachia/genética , Animais , Chaperonina 60/genética , DNA Mitocondrial/genética , Feminino , Genes Bacterianos , Geografia , Haplótipos , Funções Verossimilhança , Tipagem de Sequências Multilocus , Filogenia , Moscas Tsé-Tsé/genética , Uganda
3.
Appl Environ Microbiol ; 78(13): 4627-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544247

RESUMO

Tsetse flies (Diptera: Glossinidae) are vectors for African trypanosomes (Euglenozoa: kinetoplastida), protozoan parasites that cause African trypanosomiasis in humans (HAT) and nagana in livestock. In addition to trypanosomes, two symbiotic bacteria (Wigglesworthia glossinidia and Sodalis glossinidius) and two parasitic microbes, Wolbachia and a salivary gland hypertrophy virus (SGHV), have been described in tsetse. Here we determined the prevalence of and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in Glossina fuscipes fuscipes in Uganda over a large geographical scale spanning the range of host genetic and spatial diversity. Using a multivariate analysis approach, we uncovered complex coinfection dynamics between the pathogens and statistically significant associations between host genetic groups and pathogen prevalence. It is important to note that these coinfection dynamics and associations with the host were not apparent by univariate analysis. These associations between host genotype and pathogen are particularly evident for Wolbachia and SGHV where host groups are inversely correlated for Wolbachia and SGHV prevalence. On the other hand, trypanosome infection prevalence is more complex and covaries with the presence of the other two pathogens, highlighting the importance of examining multiple pathogens simultaneously before making generalizations about infection and spatial patterns. It is imperative to note that these novel findings would have been missed if we had employed the standard univariate analysis used in previous studies. Our results are discussed in the context of disease epidemiology and vector control.


Assuntos
Trypanosoma/crescimento & desenvolvimento , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Vírus/crescimento & desenvolvimento , Wolbachia/crescimento & desenvolvimento , Animais , Biota , Interações Hospedeiro-Patógeno , Interações Microbianas , Tripanossomíase Africana/transmissão , Uganda
4.
Appl Environ Microbiol ; 77(23): 8400-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948847

RESUMO

Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.


Assuntos
Variação Genética , Filogeografia , Simbiose , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/classificação , Wigglesworthia/isolamento & purificação , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Dados de Sequência Molecular , Protease La/genética , Análise de Sequência de DNA , Fatores de Elongação da Transcrição/genética , Moscas Tsé-Tsé/genética , Uganda , Wigglesworthia/genética , Wigglesworthia/fisiologia
5.
Sci Rep ; 8(1): 2920, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440767

RESUMO

Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype.


Assuntos
Anopheles/genética , Genes de Insetos/genética , Marcadores Genéticos/genética , Variação Genética , Estudo de Associação Genômica Ampla , Animais , Feminino , Resistência a Inseticidas/genética , Masculino , Fenótipo
6.
G3 (Bethesda) ; 6(6): 1573-84, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27172181

RESUMO

The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r(2) max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r(2) max/2 at 708 bp, an order of magnitude slower than in Drosophila Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.


Assuntos
Variação Genética , Genoma de Inseto , Genômica , Moscas Tsé-Tsé/genética , Animais , Mapeamento Cromossômico , DNA Mitocondrial , Interação Gene-Ambiente , Genes de Insetos , Ligação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Geografia , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Seleção Genética , Uganda
7.
Parasit Vectors ; 8: 385, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26197892

RESUMO

BACKGROUND: Glossina fuscipes fuscipes is the main vector of African Trypanosomiasis affecting both humans and livestock in Uganda. The human disease (sleeping sickness) manifests itself in two forms: acute and chronic. The Lake Victoria basin in Uganda has the acute form and a history of tsetse re-emergence despite concerted efforts to control tsetse. The government of Uganda has targeted the basin for tsetse eradication. To provide empirical data for this initiative, we screened tsetse flies from the basin for genetic variation at the mitochondrial DNA cytochrome oxidase II (mtDNA COII) gene with the goal of investigating genetic diversity and gene flow among tsetse, tsetse demographic history; and compare these results with results from a previous study based on microsatellite loci data in the same area. METHODS: We collected 429 Gff tsetse fly samples from 14 localities in the entire Ugandan portion of the Lake Victoria coast, covering 40,000 km(2). We performed genetic analyses on them and added data collected for 56 Gff individuals from 4 additional sampling sites in the basin. The 529 pb partial mitochondrial DNA cytochrome oxidase II (mtDNA COII) sequences totaling 485 were analysed for genetic differentiation, structuring and demographic history. The results were compared with findings from a previous study based on microsatellite loci data from the basin. RESULTS: The differences within sampling sites explained a significant proportion of the genetic variation. We found three very closely related mtDNA population clusters, which co-occurred in multiple sites. Although Φ ST (0 - 0.592; P < 0.05) and Bayesian analyses suggest some level of weak genetic differentiation, there is no correlation between genetic divergence and geographic distance (r = 0.109, P = 0.185), and demographic tests provide evidence of locality-based demographic history. CONCLUSION: The mtDNA data analysed here complement inferences made in a previous study based on microsatellite data. Given the differences in mutation rates, mtDNA afforded a look further back in time than microsatellites and revealed that Gff populations were more connected in the past. Microsatellite data revealed more genetic structuring than mtDNA. The differences in connectedness and structuring over time could be related to vector control efforts. Tsetse re-emergence after control interventions may be due to re-invasions from outside the treated areas, which emphasizes the need for an integrated area-wide tsetse eradication strategy for sustainable removal of the tsetse and trypanosomiasis problem from this area.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Moscas Tsé-Tsé/genética , Animais , Fluxo Gênico , Controle de Insetos , Lagos , Filogenia , Moscas Tsé-Tsé/classificação , Uganda
8.
PLoS Negl Trop Dis ; 9(8): e0004038, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313460

RESUMO

Tsetse are vectors of pathogenic trypanosomes, agents of human and animal trypanosomiasis in Africa. Components of tsetse saliva (sialome) are introduced into the mammalian host bite site during the blood feeding process and are important for tsetse's ability to feed efficiently, but can also influence disease transmission and serve as biomarkers for host exposure. We compared the sialome components from four tsetse species in two subgenera: subgenus Morsitans: Glossina morsitans morsitans (Gmm) and Glossina pallidipes (Gpd), and subgenus Palpalis: Glossina palpalis gambiensis (Gpg) and Glossina fuscipes fuscipes (Gff), and evaluated their immunogenicity and serological cross reactivity by an immunoblot approach utilizing antibodies from experimental mice challenged with uninfected flies. The protein and immune profiles of sialome components varied with fly species in the same subgenus displaying greater similarity and cross reactivity. Sera obtained from cattle from disease endemic areas of Africa displayed an immunogenicity profile reflective of tsetse species distribution. We analyzed the sialome fractions of Gmm by LC-MS/MS, and identified TAg5, Tsal1/Tsal2, and Sgp3 as major immunogenic proteins, and the 5'-nucleotidase family as well as four members of the Adenosine Deaminase Growth Factor (ADGF) family as the major non-immunogenic proteins. Within the ADGF family, we identified four closely related proteins (TSGF-1, TSGF-2, ADGF-3 and ADGF-4), all of which are expressed in tsetse salivary glands. We describe the tsetse species-specific expression profiles and genomic localization of these proteins. Using a passive-immunity approach, we evaluated the effects of rec-TSGF (TSGF-1 and TSGF-2) polyclonal antibodies on tsetse fitness parameters. Limited exposure of tsetse to mice with circulating anti-TSGF antibodies resulted in a slight detriment to their blood feeding ability as reflected by compromised digestion, lower weight gain and less total lipid reserves although these results were not statistically significant. Long-term exposure studies of tsetse flies to antibodies corresponding to the ADGF family of proteins are warranted to evaluate the role of this conserved family in fly biology.


Assuntos
Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Proteínas e Peptídeos Salivares/imunologia , Moscas Tsé-Tsé/imunologia , Sequência de Aminoácidos , Animais , Bovinos , Reações Cruzadas , Proteínas de Insetos/química , Insetos Vetores/química , Insetos Vetores/classificação , Insetos Vetores/fisiologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Filogenia , Proteínas e Peptídeos Salivares/química , Trypanosoma brucei gambiense/imunologia , Trypanosoma brucei gambiense/fisiologia , Tripanossomíase Bovina/imunologia , Tripanossomíase Bovina/parasitologia , Moscas Tsé-Tsé/química , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/fisiologia
9.
PLoS Negl Trop Dis ; 9(2): e0003353, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25695634

RESUMO

BACKGROUND: While Human African Trypanosomiasis (HAT) is in decline on the continent of Africa, the disease still remains a major health problem in Uganda. There are recurrent sporadic outbreaks in the traditionally endemic areas in south-east Uganda, and continued spread to new unaffected areas in central Uganda. We evaluated the evolutionary dynamics underpinning the origin of new foci and the impact of host species on parasite genetic diversity in Uganda. We genotyped 269 Trypanosoma brucei isolates collected from different regions in Uganda and southwestern Kenya at 17 microsatellite loci, and checked for the presence of the SRA gene that confers human infectivity to T. b. rhodesiense. RESULTS: Both Bayesian clustering methods and Discriminant Analysis of Principal Components partition Trypanosoma brucei isolates obtained from Uganda and southwestern Kenya into three distinct genetic clusters. Clusters 1 and 3 include isolates from central and southern Uganda, while cluster 2 contains mostly isolates from southwestern Kenya. These three clusters are not sorted by subspecies designation (T. b. brucei vs T. b. rhodesiense), host or date of collection. The analyses also show evidence of genetic admixture among the three genetic clusters and long-range dispersal, suggesting recent and possibly on-going gene flow between them. CONCLUSIONS: Our results show that the expansion of the disease to the new foci in central Uganda occurred from the northward spread of T. b. rhodesiense (Tbr). They also confirm the emergence of the human infective strains (Tbr) from non-infective T. b. brucei (Tbb) strains of different genetic backgrounds, and the importance of cattle as Tbr reservoir, as confounders that shape the epidemiology of sleeping sickness in the region.


Assuntos
Repetições de Microssatélites/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei rhodesiense/genética , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Animais , Teorema de Bayes , Bovinos/parasitologia , DNA de Protozoário/genética , Surtos de Doenças , Variação Genética/genética , Genótipo , Humanos , Quênia/epidemiologia , Reação em Cadeia da Polimerase , Trypanosoma brucei brucei/isolamento & purificação , Trypanosoma brucei rhodesiense/isolamento & purificação , Uganda/epidemiologia
10.
Trends Parasitol ; 29(8): 394-406, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23845311

RESUMO

Uganda has both forms of human African trypanosomiasis (HAT): the chronic gambiense disease in the northwest and the acute rhodesiense disease in the south. The recent spread of rhodesiense into central Uganda has raised concerns given the different control strategies the two diseases require. We present knowledge on the population genetics of the major vector species Glossina fuscipes fuscipes in Uganda with a focus on population structure, measures of gene flow between populations, and the occurrence of polyandry. The microbiome composition and diversity is discussed, focusing on their potential role on trypanosome infection outcomes. We discuss the implications of these findings for large-scale tsetse control programs, including suppression or eradication, being undertaken in Uganda, and potential future genetic applications.


Assuntos
Insetos Vetores/fisiologia , Controle Biológico de Vetores/métodos , Trypanosoma brucei gambiense/fisiologia , Trypanosoma brucei rhodesiense/fisiologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/fisiologia , Animais , Biodiversidade , DNA Mitocondrial/genética , Feminino , Fluxo Gênico , Genética Populacional , Interações Hospedeiro-Patógeno , Humanos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Masculino , Microbiota , Repetições de Microssatélites/genética , Simbiose , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/parasitologia , Uganda/epidemiologia
11.
Biomed Res Int ; 2013: 614721, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24199195

RESUMO

Tsetse flies (Glossina spp.) are the sole vectors of Trypanosoma brucei--the agent of human (HAT) and animal (AAT) trypanosomiasis. Glossina fuscipes fuscipes (Gff) is the main vector species in Uganda--the only country where the two forms of HAT disease (rhodesiense and gambiense) occur, with gambiense limited to the northwest. Gff populations cluster in three genetically distinct groups in northern, southern, and western Uganda, respectively, with a contact zone present in central Uganda. Understanding the dynamics of this contact zone is epidemiologically important as the merger of the two diseases is a major health concern. We used mitochondrial and microsatellite DNA data from Gff samples in the contact zone to understand its spatial extent and temporal stability. We show that this zone is relatively narrow, extending through central Uganda along major rivers with south to north introgression but displaying no sex-biased dispersal. Lack of obvious vicariant barriers suggests that either environmental conditions or reciprocal competitive exclusion could explain the patterns of genetic differentiation observed. Lack of admixture between northern and southern populations may prevent the sympatry of the two forms of HAT disease, although continued control efforts are needed to prevent the recolonization of tsetse-free regions by neighboring populations.


Assuntos
Variação Genética , Insetos Vetores/genética , Lagos , Repetições de Microssatélites/genética , Trypanosoma brucei brucei , Tripanossomíase Africana , Moscas Tsé-Tsé/genética , Animais , Feminino , Humanos , Masculino , Uganda/epidemiologia
12.
J Vet Med ; 2013: 949638, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26464916

RESUMO

African swine fever (ASF) is a contagious viral disease, which can cause up to 100% mortality among domestic pigs. In Uganda there is paucity of information on the epidemiology of the disease, hence a study was carried out to elucidate the patterns of ASF outbreaks. Spatial and temporal analyses were performed with data collected monthly by the district veterinary officers (DVOs) and sent to the central administration at MAAIF from 2001 to 2012. Additionally, risk factors and the associated characteristics related to the disease were assessed based on semistructured questionnaires sent to the DVOs. A total of 388 ASF outbreaks were reported in 59 districts. Of these outbreaks, 201 (51.8%) were reported in districts adjacent to the national parks while 80 (20.6%) were adjacent to international borders. The number of reported ASF outbreaks changed over time and by geographical regions; however, no outbreak was reported in the North-Eastern region. ASF was ranked as second most important disease of pigs, and it occurred mostly during the dry season (P = 0.01). Pig movements due to trade (OR 15.5, CI 4.9-49.1) and restocking (OR 6.6, CI 2.5-17.3) were the major risk factors. ASF control strategies should focus on limiting pig movements in Uganda.

13.
Parasit Vectors ; 5: 222, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23036153

RESUMO

BACKGROUND: Glossina fuscipes fuscipes is the primary vector of trypanosomiasis in humans and livestock in Uganda. The Lake Victoria basin has been targeted for tsetse eradication using a rolling carpet initiative, from west to east, with four operational blocks (3 in Uganda and 1 in Kenya), under a Pan-African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). We screened tsetse flies from the three Ugandan PATTEC blocks for genetic diversity at 15 microsatellite loci from continental and offshore populations to provide empirical data to support this initiative. METHODS: We collected tsetse samples from 11 sites across the Lake Victoria basin in Uganda. We performed genetic analyses on 409 of the collected tsetse flies and added data collected for 278 individuals in a previous study. The flies were screened across 15 microsatellite loci and the resulting data were used to assess the temporal stability of populations, to analyze patterns of genetic exchange and structuring, to estimate dispersal rates and evaluate the sex bias in dispersal, as well as to estimate demographic parameters (NE and NC). RESULTS: We found that tsetse populations in this region were stable over 4-16 generations and belong to 4 genetic clusters. Two genetic clusters (1 and 2) corresponded approximately to PATTEC blocks 1 and 2, while the other two (3 and 4) fell within PATTEC block 3. Island populations grouped into the same genetic clusters as neighboring mainland sites, suggesting presence of gene flow between these sites. There was no evidence of the stretch of water separating islands from the mainland forming a significant barrier to dispersal. Dispersal rates ranged from 2.5 km per generation in cluster 1 to 14 km per generation in clusters 3 and 4. We found evidence of male-biased dispersal. Few breeders are successfully dispersing over large distances. Effective population size estimates were low (33-310 individuals), while census size estimates ranged from 1200 (cluster 1) to 4100 (clusters 3 and 4). We present here a novel technique that adapts an existing census size estimation method to sampling without replacement, the scheme used in sampling tsetse flies. CONCLUSION: Our study suggests that different control strategies should be implemented for the three PATTEC blocks and that, given the high potential for re-invasion from island sites, mainland and offshore sites in each block should be targeted at the same time.


Assuntos
Variação Genética , Filogeografia , Moscas Tsé-Tsé/crescimento & desenvolvimento , Moscas Tsé-Tsé/genética , Animais , Análise por Conglomerados , Feminino , Masculino , Repetições de Microssatélites , Moscas Tsé-Tsé/classificação , Uganda
14.
Parasit Vectors ; 4: 19, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21320301

RESUMO

BACKGROUND: Glossina fuscipes, a riverine species of tsetse, is the major vector of human African trypanosomiasis (HAT) in sub-Saharan Africa. Understanding the population dynamics, and specifically the temporal stability, of G. fuscipes will be important for informing vector control activities. We evaluated genetic changes over time in seven populations of the subspecies G. f. fuscipes distributed across southeastern Uganda, including a zone of contact between two historically isolated lineages. A total of 667 tsetse flies were genotyped at 16 microsatellite loci and at one mitochondrial locus. RESULTS: Results of an AMOVA indicated that time of sampling did not explain a significant proportion of the variance in allele frequencies observed across all samples. Estimates of differentiation between samples from a single population ranged from approximately 0 to 0.019, using Jost's DEST. Effective population size estimates using momentum-based and likelihood methods were generally large. We observed significant change in mitochondrial haplotype frequencies in just one population, located along the zone of contact. The change in haplotypes was not accompanied by changes in microsatellite frequencies, raising the possibility of asymmetric mating compatibility in this zone. CONCLUSION: Our results suggest that populations of G. f. fuscipes were stable over the 8-12 generations studied. Future studies should aim to reconcile these data with observed seasonal fluctuations in the apparent density of tsetse.


Assuntos
Vetores de Doenças , Variação Genética , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , DNA Mitocondrial/genética , Frequência do Gene , Haplótipos , Repetições de Microssatélites , Moscas Tsé-Tsé/genética , Uganda
15.
Parasit Vectors ; 4: 122, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21711519

RESUMO

BACKGROUND: Glossina pallidipes has been implicated in the spread of sleeping sickness from southeastern Uganda into Kenya. Recent studies indicated resurgence of G. pallidipes in Lambwe Valley and southeastern Uganda after what were deemed to be effective control efforts. It is unknown whether the G. pallidipes belt in southeastern Uganda extends into western Kenya. We investigated the genetic diversity and population structure of G. pallidipes in Uganda and western Kenya. RESULTS: AMOVA indicated that differences among sampling sites explained a significant proportion of the genetic variation. Principal component analysis and Bayesian assignment of microsatellite genotypes identified three distinct clusters: western Uganda, southeastern Uganda/Lambwe Valley, and Nguruman in central-southern Kenya. Analyses of mtDNA confirmed the results of microsatellite analysis, except in western Uganda, where Kabunkanga and Murchison Falls populations exhibited haplotypes that differed despite homogeneous microsatellite signatures. To better understand possible causes of the contrast between mitochondrial and nuclear markers we tested for sex-biased dispersal. Mean pairwise relatedness was significantly higher in females than in males within populations, while mean genetic distance was lower and relatedness higher in males than females in between-population comparisons. Two populations sampled on the Kenya/Uganda border, exhibited the lowest levels of genetic diversity. Microsatellite alleles and mtDNA haplotypes in these two populations were a subset of those found in neighboring Lambwe Valley, suggesting that Lambwe was the source population for flies in southeastern Uganda. The relatively high genetic diversity of G. pallidipes in Lambwe Valley suggest large relict populations remained even after repeated control efforts. CONCLUSION: Our research demonstrated that G. pallidipes populations in Kenya and Uganda do not form a contiguous tsetse belt. While Lambwe Valley appears to be a source population for flies colonizing southeastern Uganda, this dispersal does not extend to western Uganda. The complicated phylogeography of G. pallidipes warrants further efforts to distinguish the role of historical and modern gene flow and possible sex-biased dispersal in structuring populations.


Assuntos
Variação Genética , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , Análise por Conglomerados , DNA Mitocondrial/genética , Feminino , Genótipo , Quênia , Masculino , Repetições de Microssatélites , Moscas Tsé-Tsé/genética , Uganda
16.
PLoS Negl Trop Dis ; 5(8): e1266, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21858237

RESUMO

BACKGROUND: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. PRINCIPAL FINDINGS: The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f. fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. CONCLUSION/SIGNIFICANCE: We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme.


Assuntos
Insetos Vetores , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/genética , Animais , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Etiópia , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA , Tanzânia
17.
PLoS Negl Trop Dis ; 5(6): e1190, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666797

RESUMO

BACKGROUND: Glossina fuscipes fuscipes is the main vector of human and animal trypanosomiasis in Africa, particularly in Uganda. Attempts to control/eradicate this species using biological methods require knowledge of its reproductive biology. An important aspect is the number of times a female mates in the wild as this influences the effective population size and may constitute a critical factor in determining the success of control methods. To date, polyandry in G.f. fuscipes has not been investigated in the laboratory or in the wild. Interest in assessing the presence of remating in Ugandan populations is driven by the fact that eradication of this species is at the planning stage in this country. METHODOLOGY/PRINCIPAL FINDINGS: Two well established populations, Kabukanga in the West and Buvuma Island in Lake Victoria, were sampled to assess the presence and frequency of female remating. Six informative microsatellite loci were used to estimate the number of matings per female by genotyping sperm preserved in the female spermathecae. The direct count of the minimum number of males that transferred sperm to the spermathecae was compared to Maximum Likelihood and Bayesian probability estimates. The three estimates provided evidence that remating is common in the populations but the frequency is substantially different: 57% in Kabukanga and 33% in Buvuma. CONCLUSIONS/SIGNIFICANCE: The presence of remating, with females maintaining sperm from different mates, may constitute a critical factor in cases of re-infestation of cleared areas and/or of residual populations. Remating may enhance the reproductive potential of re-invading propagules in terms of their effective population size. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season.


Assuntos
Comportamento Sexual Animal , Moscas Tsé-Tsé/fisiologia , Animais , Feminino , Genótipo , Masculino , Repetições de Microssatélites , Tipagem Molecular , Dinâmica Populacional , Reprodução , Estações do Ano , Espermatozoides , Moscas Tsé-Tsé/crescimento & desenvolvimento , Uganda
18.
PLoS One ; 5(7): e11872, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20686697

RESUMO

BACKGROUND: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved. METHODOLOGY/PRINCIPAL FINDINGS: A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG. CONCLUSION: This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and management of vector control programs in Africa.


Assuntos
Anopheles , Resistência a Inseticidas/fisiologia , Inseticidas , Piretrinas , Animais , Anopheles/genética , Perfilação da Expressão Gênica , Haplótipos , Resistência a Inseticidas/genética , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uganda
19.
PLoS Negl Trop Dis ; 4(3): e636, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20300518

RESUMO

BACKGROUND: Glossina fuscipes fuscipes, a riverine species of tsetse, is the main vector of both human and animal trypanosomiasis in Uganda. Successful implementation of vector control will require establishing an appropriate geographical scale for these activities. Population genetics can help to resolve this issue by characterizing the extent of linkage among apparently isolated groups of tsetse. METHODOLOGY/PRINCIPAL FINDINGS: We conducted genetic analyses on mitochondrial and microsatellite data accumulated from approximately 1000 individual tsetse captured in Uganda and neighboring regions of Kenya and Sudan. Phylogeographic analyses suggested that the largest scale genetic structure in G. f. fuscipes arose from an historical event that divided two divergent mitochondrial lineages. These lineages are currently partitioned to northern and southern Uganda and co-occur only in a narrow zone of contact extending across central Uganda. Bayesian assignment tests, which provided evidence for admixture between northern and southern flies at the zone of contact and evidence for northerly gene flow across the zone of contact, indicated that this structure may be impermanent. On the other hand, microsatellite structure within the southern lineage indicated that gene flow is currently limited between populations in western and southeastern Uganda. Within regions, the average F(ST) between populations separated by less than 100 km was less than approximately 0.1. Significant tests of isolation by distance suggested that gene flow is ongoing between neighboring populations and that island populations are not uniformly more isolated than mainland populations. CONCLUSIONS/SIGNIFICANCE: Despite the presence of population structure arising from historical colonization events, our results have revealed strong signals of current gene flow within regions that should be accounted for when planning tsetse control in Uganda. Populations in southeastern Uganda appeared to receive little gene flow from populations in western or northern Uganda, supporting the feasibility of area wide control in the Lake Victoria region by the Pan African Tsetse and Trypanosomiasis Eradication Campaign.


Assuntos
Vetores de Doenças , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/genética , Animais , Análise por Conglomerados , DNA Mitocondrial/genética , Fluxo Gênico , Geografia , Humanos , Quênia , Repetições de Microssatélites , Filogenia , Sudão , Uganda
20.
Trans R Soc Trop Med Hyg ; 103(11): 1121-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19303125

RESUMO

Insecticide resistance in Anopheles gambiae threatens the success of malaria vector control programmes in sub-Saharan Africa. In order to manage insecticide resistance successfully, it is essential to assess continuously the target mosquito population. Here, we collected baseline information on the distribution and prevalence of insecticide resistance and its association with target-site mutations in eastern Uganda. Anopheles gambiae s.l. adults were raised from wild-caught larvae sampled from two ecologically distinct breeding sites and exposed to WHO discriminating concentrations of DDT, permethrin, deltamethrin, bendiocarb and malathion. Survival rates to DDT were as high as 85.4%, alongside significant resistance levels to permethrin (38.5%), reduced susceptibility to deltamethrin, but full susceptibility to bendiocarb and malathion. Using molecular diagnostics, susceptible and resistant specimens were further tested for the presence of knockdown resistance (kdr) and acetylcholinesterase 1 resistance (ace-1(R)) alleles. While ace-1(R) and kdrL1014F ('kdr west') alleles were absent, the kdr L1014S ('kdr east') allele was present in both populations. In A. gambiae s.s., L1014S was closely associated with DDT and, to a lesser degree, with permethrin resistance. Intriguingly, the association between DDT resistance and the presence of L1014S is consistent with a co-dominant effect, with heterozygous individuals showing an intermediate phenotype.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Mutação Puntual/genética , Animais , Anopheles/efeitos dos fármacos , DDT/farmacologia , Feminino , Frequência do Gene , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Nitrilas/farmacologia , Permetrina/farmacologia , Reação em Cadeia da Polimerase , Piretrinas/farmacologia , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA