Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D102-D105, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34751405

RESUMO

The Bioinformation and DDBJ (DNA Data Bank of Japan) Center (DDBJ Center; https://www.ddbj.nig.ac.jp) operates archival databases that collect nucleotide sequences, study and sample information, and distribute them without access restriction to progress life science research as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute. Besides the INSDC databases, the DDBJ Center also provides the Genomic Expression Archive for functional genomics data and the Japanese Genotype-phenotype Archive for human data requiring controlled access. Additionally, the DDBJ Center started a new public repository, MetaboBank, for experimental raw data and metadata from metabolomics research in October 2020. In response to the COVID-19 pandemic, the DDBJ Center openly shares SARS-CoV-2 genome sequences in collaboration with Shizuoka Prefecture and Keio University. The operation of DDBJ is based on the National Institute of Genetics (NIG) supercomputer, which is open for large-scale sequence data analysis for life science researchers. This paper reports recent updates on the archival databases and the services of DDBJ.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genoma Microbiano , Japão , Metabolômica , SARS-CoV-2/genética , Transcriptoma
2.
Nucleic Acids Res ; 36(Database issue): D1028-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18089549

RESUMO

The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Oryza/genética , Genes de Plantas , Genômica , Internet , MicroRNAs/genética , RNA Interferente Pequeno/genética , Interface Usuário-Computador
3.
Nucleic Acids Res ; 36(Database issue): D793-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18089548

RESUMO

Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of full-length cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB_4.6. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 (98.1%) protein-coding and 642 (1.9%) non-protein-coding loci; 858 (2.5%) transcribed loci overlapped with predicted pseudogenes. For all these transcripts and genes, we provide comprehensive annotation including gene structures, gene functions, alternative splicing variants, functional non-protein-coding RNAs, functional domains, predicted sub cellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs, co-localization with orphan diseases, gene expression profiles, orthologous genes, protein-protein interactions (PPI) and annotation for gene families. The current H-InvDB annotation resources consist of two main views: Transcript view and Locus view and eight sub-databases: the DiseaseInfo Viewer, H-ANGEL, the Clustering Viewer, G-integra, the TOPO Viewer, Evola, the PPI view and the Gene family/group.


Assuntos
Bases de Dados Genéticas , Genes , RNA Mensageiro/química , Animais , Mapeamento Cromossômico , DNA Complementar/química , Humanos , Internet , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Interface Usuário-Computador
4.
DNA Res ; 13(6): 245-54, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17166861

RESUMO

A large number of complete microorganism genomes has been sequenced and submitted to the public database and then incorporated into our complete genome database, Genome Information Broker (GIB, http://gib.genes.nig.ac.jp/). However, when comparative genomics is carried out, researchers must be aware that there are protein-coding genes not confirmed by homology or motif search and that reliable protein-coding genes are missing. Therefore, we developed a protocol (Gene Trek in Prokaryote Space, GTPS) for finding possible protein-coding genes in bacterial genomes. GTPS assigns a degree of reliability to predicted protein-coding genes. We first systematically applied the protocol to the complete genomes of all 123 bacterial species and strains that were publicly available as of July 2003, and then to those of 183 species and strains available as of September 2004. We found a number of incorrect genes and several new ones in the genome data in question. We also found a way to estimate the total number of orthologous genes in the bacterial world.


Assuntos
Bactérias/classificação , Genes Bacterianos , Genética Microbiana , Genoma Bacteriano , Bactérias/genética , Biologia Computacional , DNA Bacteriano/genética , Sistemas de Gerenciamento de Base de Dados , Fases de Leitura Aberta , Células Procarióticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA