RESUMO
Tropomyosins coat actin filaments to impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. TPM1 has been shown to regulate blood cell formation in vitro, but it remains unclear how or when TPM1 affects hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, we found that TPM1 knockout augmented developmental cell state transitions and key signaling pathways, including tumor necrosis factor alpha (TNF-α) signaling, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses revealed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced HE formation during embryogenesis, without increasing the number of hematopoietic stem cells. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.
Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/genética , Hematopoese/genética , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Hemangioblastos/metabolismo , Hemangioblastos/citologia , Transdução de Sinais , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Tropomyosins coat actin filaments and impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. Prior work suggested that TPM1 regulated blood cell formation in vitro, but it was unclear how or when TPM1 affected hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, TPM1 knockout was found to augment developmental cell state transitions, as well as TNFα and GTPase signaling pathways, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses showed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Indeed, analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced the formation of HE during embryogenesis. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.