Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(6): 1239-1254.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37028427

RESUMO

Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b+ type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells. CD301b+ DC2 were enriched for phagocytosis and maturation programs, while also expressing tolerogenic markers. In both human and murine skin, these signatures were reinforced by microbial uptake. In contrast to their adult counterparts or other early-life DC subsets, neonatal CD301b+ DC2 highly expressed the retinoic-acid-producing enzyme, RALDH2, the deletion of which limited commensal-specific Treg cell generation. Thus, synergistic interactions between bacteria and a specialized DC subset critically support early-life tolerance at the cutaneous interface.


Assuntos
Células Dendríticas , Pele , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Tolerância Imunológica , Aldeído Oxirredutases/metabolismo
2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873143

RESUMO

Early life microbe-immune interactions at barrier surfaces have lasting impacts on the trajectory towards health versus disease. Monocytes, macrophages and dendritic cells are primary sentinels in barrier tissues, yet the salient contributions of commensal-myeloid crosstalk during tissue development remain poorly understood. Here, we identify that commensal microbes facilitate accumulation of a population of monocytes in neonatal skin. Transient postnatal depletion of these monocytes resulted in heightened IL-17A production by skin T cells, which was particularly sustained among CD4+ T cells into adulthood and sufficient to exacerbate inflammatory skin pathologies. Neonatal skin monocytes were enriched in expression of negative regulators of the IL-1 pathway. Functional in vivo experiments confirmed a key role for excessive IL-1R1 signaling in T cells as contributing to the dysregulated type 17 response in neonatal monocyte-depleted mice. Thus, a commensal-driven wave of monocytes into neonatal skin critically facilitates long-term immune homeostasis in this prominent barrier tissue.

3.
Cell Rep ; 39(9): 110891, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649365

RESUMO

Resident microbes in skin and gut predominantly impact local immune cell function during homeostasis. However, colitis-associated neutrophilic skin disorders suggest possible breakdown of this compartmentalization with disease. Using a model wherein neonatal skin colonization by Staphylococcus epidermidis facilitates generation of commensal-specific tolerance and CD4+ regulatory T cells (Tregs), we ask whether this response is perturbed by gut inflammation. Chemically induced colitis is accompanied by intestinal expansion of S. epidermidis and reduces gut-draining lymph node (dLN) commensal-specific Tregs. It also results in reduced commensal-specific Tregs in skin and skin-dLNs and increased skin neutrophils. Increased CD4+ circulation between gut and skin dLN suggests that the altered cutaneous response is initiated in the colon, and resistance to colitis-induced effects in Cd4creIl1r1fl/fl mice implicate interleukin (IL)-1 in mediating the altered commensal-specific response. These findings provide mechanistic insight into observed connections between inflammatory skin and intestinal diseases.


Assuntos
Colite , Imunidade , Animais , Colite/induzido quimicamente , Inflamação , Camundongos , Pele , Staphylococcus epidermidis , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA