Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611776

RESUMO

The aim of this case study was the evaluation of the selected metals' concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1-98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101-3.21 × 103 CFU m-3 (air), 1.87 × 105-2.30 × 106 CFU mL-1 (leachates), and 8.33 × 104-2.69 × 106 CFU g-1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.


Assuntos
Poeira , Mercúrio , Humanos , Células CACO-2 , Metais , Solo
2.
Med Pr ; 74(5): 363-375, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104337

RESUMO

BACKGROUND: The study aimed to evaluate the effectiveness of filtering facepiece respirators (FFRs) in reducing odour nuisances in agricultural work environment. Additionally, an assessment was conducted on the microbiological contamination of FFRs and the functionality of Time4Mask application in enhancing workplace safety. MATERIAL AND METHODS: Two types of FFRs were used for the study: with absorbing properties and reference ones. The research was carried out in 6 livestock rooms during a 1-week period in early spring (February-March 2021) on a farm in central Poland. The microclimate conditions (thermoanemometer), and particulate matter concentrations (laser photometer) were assessed. Additionally, the odour content in the studied rooms and the breathing zone of FFR users (gas chromatography with mass spectrometry) were evaluated. The number of microorganisms on the respirators was determined (cultivation method), followed by their identification (biochemical tests, taxonomic keys). Breakthrough curves were determined for both FFR types to assess absorption capabilities. RESULTS: The average temperature in the livestock rooms was about 13°C, relative humidity - 53%, air flow velocity - 0.21 m/s, and particulate matter concentration - 0.216 mg/m3. A significant variety of odorants was found in the environment and the breathing zone under the FFRs. Bacterial counts ranged between 2.4 × 101 and 2.6 × 102 CFU/cm2, fungi between 3.2 × 100 and 5.4 × 101 CFU/cm2, xerophilic fungi from 4.4 × 100 to 4.0 × 101 CFU/cm2, mannitol-positive staphylococci between 1.6 × 101 and 1.0 × 102 CFU/cm2, and haemolytic staphylococci from 2.2 × 101 to 4.5 × 101 CFU/cm2, depending on the respirator type. Respirators were colonized by bacteria from the genera: Bacillus, Staphylococcus, actinobacteria Streptomyces sp., and fungi: Candida, Absidia, Aspergillus, Mucor, and Penicillium. Respirators with absorbing properties had over 8-times longer breakthrough time than reference ones. CONCLUSIONS: Respirators with activated carbon effectively improved work comfort when exposed to odours. Due to growth of microorganisms in the respirator materials, periodic replacement is necessary. It is crucial to provide workers with information about the safe-use time of respirators, considering environmental conditions. This is achievable using modern IT tools like Time4Mask application. Med Pr Work Health Saf. 2023;76(5):363-75.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Dispositivos de Proteção Respiratória , Humanos , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Material Particulado/análise , Ventiladores Mecânicos , Fungos , Bactérias
3.
Front Public Health ; 11: 1330430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288426

RESUMO

Purpose: The research purpose is to improve the management of occupational risks associated with hazards as well as the organization's capabilities to identify hazardous factors (HFs) using the "BOW-TIE" method in accordance with the provisions of the ISO 45001:2019 standard. Methods: To improve occupational risk management, the "BOW-TIE" method has been introduced into occupational health and safety management systems. This approach facilitates a comprehensive description and analysis of potential risk development from identifying hazardous factors to studying the consequences. It visually integrates fault and event trees to provide a holistic view of risk dynamics. Results: The improvement of the occupational hazard risk management process considers both internal and external factors affecting the organization, thereby increasing the probability and severity of potential hazardous events. The revised approach categorizes risk levels as acceptable, unacceptable, or verifiable. In addition, occupational risk management requires an in-depth analysis of the organization's external and internal environment to identify hazards that affect the probability and severity of potential hazardous events. Conclusion: This research proposes an innovative approach to occupational risk management by determining the magnitude of occupational risk as the cumulative result of assessing risks associated with all external and internal factors influencing the probability of hazardous event occurring. The introduction of the "BOW-TIE" method, combined with a comprehensive analysis of the organizational environments, facilitates a more effective and nuanced approach to occupational risk management.


Assuntos
Saúde Ocupacional , Gestão de Riscos , Medição de Risco/métodos , Gestão de Riscos/métodos , Gestão da Segurança/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA