Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Inorg Chem ; 63(1): 108-116, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38113189

RESUMO

Spin crossover (SCO) materials that possess switchable and cooperative fluorescence have long focused interest in photonic sensor devices to monitor the variations in the physicochemical parameters of the external environment. However, the lack of quantified cooperativity for the SCO transition operating in isolated molecules is detrimental to short-term technological applications. In this study, a pretwisted energy D-A system combining the deep-blue naphthalimide fluorophore (donor) and the FeN6 SCO chromophore (switchable acceptor) has been developed with the formula of Fe(naph-abpt)2(NCS)2·2DMF (1), where naph-abpt is N-[3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl]-1,8-naphthalimide. Dual emission from the naphthalimide function based on its vibronic structure exhibits a different synergy effect with SCO, providing a new platform for ratiometric fluorescence thermosensing. Theoretical calculations and optical experimental results demonstrate an excellent correlation between luminescence intensity ratio signals and magnetic data of spin transition, promising a high sensitivity of the optical activity of the ligand to the spin state of the active iron(II) ions, with the maximum relative sensitivity as 0.7% K-1 around T1/2.

2.
Phys Chem Chem Phys ; 26(16): 12520-12529, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38605679

RESUMO

In the quest for sustainable ammonia synthesis routes, biomimetic complexes have been intensively studied. Here we focus on the Peter's group Fe-nitrogenase catalyst with EPPP scorpionate ligands, and explore the effect of anchor atom selection (B, Al, Ga, N and P) and the impact of chloro substitution on the phenyl rings on nitrogen fixation. The reaction profiles of complexes with Lewis basic anchor atoms exhibited energy-demanding reduction steps, with more exergonic protonation steps compared to the smoother reaction profiles observed for catalysts with Lewis acid anchor atoms, also implying that catalyst regeneration is especially challenging for catalysts with Lewis basic anchor atoms. The binding affinities of N2 and H2 to the complexes suggest that the autocatalytic hydrogen evolution reaction (HER), which ultimately leads to consumption of reactants and catalyst deactivation, is likely to become more prevalent for heavier anchor atoms and be more significant for Lewis basic anchor atom complexes. Out of the studied complexes, boron showed the smoothest reaction profile and the smallest affinity for H2, which supports its superiour role as an anchor atom in accordance with experimental data.

3.
Phys Chem Chem Phys ; 26(23): 16579-16588, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832404

RESUMO

The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine ß-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.


Assuntos
Cistationina beta-Sintase , Simulação de Dinâmica Molecular , Fosfato de Piridoxal , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/química , Humanos , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Gases/química , Gases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Ligação de Hidrogênio , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Heme/química , Heme/metabolismo , Domínio Catalítico , Teoria Quântica , Cisteína/química , Cisteína/metabolismo
4.
Phys Chem Chem Phys ; 25(12): 8767-8778, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912034

RESUMO

Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of ß-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding N-carbamoyl-ß-amino acids. This enzyme has the potential to be used as a tool in the production of ß-amino acids. Here, the reaction mechanism and origin of stereospecificity of DHPases from Saccharomyces kluyveri and Sinorhizobium meliloti CECT4114 were investigated and compared using a quantum mechanical cluster approach based on density functional theory. Two models of the enzyme active site were designed from the X-ray crystal structure of the native enzyme: a small cluster to characterize the mechanism and the stationary points and a large model to probe the stereospecificity and the role of stereo-gate-loop (SGL) residues. It is shown that a hydroxide ion first performs a nucleophilic attack on the substrate, followed by the abstraction of a proton by Asp358, which occurs concertedly with protonation of the ring nitrogen by the same residue. For the DHT substrate, the enzyme displays a preference for the L-configuration, in good agreement with experimental observation. Comparison of the reaction energetics of the two models reveals the importance of SGL residues in the stereospecificity of catalysis. The role of the conserved Tyr172 residue in transition-state stabilization is confirmed as the Tyr172Phe mutation increases the activation barrier of the reaction by ∼8 kcal mol-1. A detailed understanding of the catalytic mechanism of the enzyme could offer insight for engineering in order to enhance its activity and substrate scope.


Assuntos
Amidoidrolases , Prótons , Amidoidrolases/química , Domínio Catalítico , Aminoácidos
5.
Chemistry ; 28(49): e202200930, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670519

RESUMO

The binding of small gas molecules such as NO and CO plays a major role in the signaling routes of the human body. The sole NO-receptor in humans is soluble guanylyl cyclase (sGC) - a histidine-ligated heme protein, which, upon NO binding, activates a downstream signaling cascade. Impairment of NO-signaling is linked, among others, to cardiovascular and inflammatory diseases. In the present work, we use a combination of theoretical tools such as MD simulations, high-level quantum chemical calculations and hybrid QM/MM methods to address various aspects of NO binding and to elucidate the most likely reaction paths and the potential intermediates of the reaction. As a model system, the H-NOX protein from Shewanella oneidensis (So H-NOX) homologous to the NO-binding domain of sGC is used. The signaling route is predicted to involve NO binding to form a six-coordinate intermediate heme-NO complex, followed by relatively facile His decoordination yielding a five-coordinate adduct with NO on the distal side with possible isomerization to the proximal side through binding of a second NO and release of the first one. MD simulations show that the His sidechain can quite easily rotate outward into solvent, with this motion being accompanied in our simulations by shifts in helix positions that are consistent with this decoordination leading to significant conformational change in the protein.


Assuntos
Química Computacional , Hemeproteínas , Heme/química , Hemeproteínas/química , Humanos , Óxido Nítrico/química , Ligação Proteica , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo
6.
J Comput Aided Mol Des ; 36(4): 279-289, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384596

RESUMO

Creatininase is a key enzyme of creatinine-metabolizing pathway in mammals, and has a great potential for diagnostic application. It catalyzes the reversible conversion of creatinine to creatine. Here, we investigated its reaction mechanism with density functional theory in conjunction with the quantum cluster approach. Three reaction pathways in which several possible proton transfers assisted by either His178 or a water ligand to Zn1 (Wat2) or both were considered. DFT calculations reveal, depending on Wat2 coordination mode at Zn1, two competitive ring-opening pathways where His178 playing a central role as a proton shuttle or both His178 and Wat2 serving as a dual catalytic role as a base and an acid, respectively. Three elementary steps were proposed for the reaction: the first involves nucleophilic attack by a bridging hydroxide to the substrate and forms a gem-diolate intermediate, followed by a proton transfer from the gem-diolate to His178 (His178 protonation is a required step for efficient proton transfers). Finally, the second proton transfer from the protonated His178 or Wat2 to the amide of substrate leads to the ring opening. The first proton transfer is the rate-limiting step of the whole reaction, in consistent with previous experimental and computational studies. A detailed understanding of the reaction mechanism of the creatininase enzyme family will also be helpful for developing a biosensor for kidney function.


Assuntos
Água , Zinco , Amidoidrolases , Sítios de Ligação , Creatinina , Modelos Moleculares , Prótons , Teoria Quântica , Água/química , Zinco/química , Zinco/metabolismo
7.
Molecules ; 25(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585836

RESUMO

Gas sensing is crucial for both prokaryotes and eukaryotes and is primarily performed by heme-based sensors, including H-NOX domains. These systems may provide a new, alternative mode for transporting gaseous molecules in higher organisms, but for the development of such systems, a detailed understanding of the ligand-binding properties is required. Here, we focused on ligand migration within the protein matrix: we performed molecular dynamics simulations on three bacterial (Ka, Ns and Cs) H-NOX proteins and studied the kinetics of CO, NO and O2 diffusion. We compared the response of the protein structure to the presence of ligands, diffusion rate constants, tunnel systems and storage pockets. We found that the rate constant for diffusion decreases in the O2 > NO > CO order in all proteins, and in the Ns > Ks > Cs order if single-gas is considered. Competition between gases seems to seriously influence the residential time of ligands spent in the distal pocket. The channel system is profoundly determined by the overall fold, but the sidechain pattern has a significant role in blocking certain channels by hydrophobic interactions between bulky groups, cation-π interactions or hydrogen bonding triads. The majority of storage pockets are determined by local sidechain composition, although certain functional cavities, such as the distal and proximal pockets are found in all systems. A major guideline for the design of gas transport systems is the need to chemically bind the gas molecule to the protein, possibly joining several proteins with several heme groups together.


Assuntos
Gases/metabolismo , Simulação de Dinâmica Molecular , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Difusão , Cinética , Ligantes , Domínios Proteicos
8.
Inorg Chem ; 58(12): 7969-7977, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31125218

RESUMO

Nitrogen reduction reaction (N2RR) carried out on biomimetic catalytic systems is considered to be a promising alternative for the traditional Haber-Bosch ammonia synthesis. Unfortunately, the selectivity of the currently known biomimetic catalysts is poor, as they also catalyze the unproductive hydrogen evolution reaction (HER). In the present computational study, we examine the HER activity of early N2RR intermediates in EP3 (E = B, Si) ligated single-site biomimetic iron complexes by calculating and comparing the activation Gibbs free energies of HER and N2RR elementary steps. We find that, in contrast to previous suggestions, early N2RR intermediates are not likely sources of HER under turnover conditions, as the barriers of the competing N2RR steps are significantly lower. Consequently, future research should focus on preventing other potential HER mechanisms, e.g., hydride formation, rather than accelerating the consumption of early N2RR intermediates as proposed earlier to design more efficient biomimetic catalysts.

9.
Chemistry ; 24(20): 5350-5358, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29285802

RESUMO

Ligand binding by proteins is among the most fundamental processes in nature. Among these processes the binding of small gas molecules, such as O2 , CO and NO to heme proteins has traditionally received vivid interest, which was further boosted by their recently recognized significant role in gas sensing in the body. At the heart of the binding of these ligands to the heme group is the spinforbidden reaction between high-spin iron(II) and the ligand yielding a low-spin adduct. We use computational means to address the complete mechanism of CO and NO binding by myoglobin. Considering that it involves several steps occurring on different time scales, molecular dynamics simulations were performed to address the diffusion of the ligand through the enzyme, and DFT calculations in combination with statistical rate calculation to investigate the spin-forbidden reaction. The calculations yielded rate constants in qualitative agreement with experiments and revealed that the bottleneck of NO and CO binding is different; for NO, diffusion was found to be rate-limiting, whereas for CO, the spin-forbidden step is the slowest.


Assuntos
Monóxido de Carbono/química , Mioglobina/química , Óxido Nítrico/química , Sítios de Ligação , Difusão , Heme/química , Ferro/química , Cinética , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Teoria Quântica , Termodinâmica
10.
Inorg Chem ; 57(14): 8499-8508, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29972016

RESUMO

Biomimetic nitrogen fixation provides an attractive alternative for the century-old Haber-Bosch process; however, the performance of the currently available molecular biomimetic catalysts is very limited. In this work, we are aiming to understand the catalytic cycle of one of the most promising biomimetic complex families that can be the cornerstone of future computer-aided rational design of biomimetic complexes. We calculate the Gibbs free energy of all elementary reaction steps of homogeneous dinitrogen reduction to NH3 on single-site iron complexes with EPPP tetradentate ligands (E = B, Si). We examine all possible mechanisms and identify the dominant pathways and the critical elementary steps that can be rate-determining in the catalytic cycle of nitrogen fixation. We find that the catalytic mechanism depends on the applied ligand and that the distal pathway observed with E = B is the most favorable route regarding the catalytic performance. Our calculations also reveal the lack of thermodynamic driving force in the last steps of the catalytic cycle that can be responsible for the low catalytic activity of the studied biomimetic catalysts. Our results can serve as a starting point for the rational design of biomimetic complexes, which should focus on establishing a steadily decreasing Gibbs free energy profile, as suggested by the Sabatier principle.

11.
Inorg Chem ; 57(16): 9880-9891, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30080034

RESUMO

A series of bulky substituted bipyridine-related iron(II) complexes [Fe(H2Bpz2)2(L)] (pz = pyrazolyl) were prepared, where L = 5,5'-dimethyl-2,2'-bipyridine (bipy-CH3, 1), L = dimethyl-2,2'-bipyridyl-5,5'-dicarboxylate (MeObpydc, 2), L = diethyl-2,2'-bipyridyl-5,5'-dicarboxylate (EtObpydc, 3), or L = diisopropyl-2,2'-bipyridine-5,5'-dicarboxylate ( i-PrObpydc, 4). The crystal structures of five new iron(II) complexes were determined by X-ray diffraction: those of 1, 3, and 4 and two modifications of 3 (3B) and 4 (4B). Complexes 1 and 3B display incomplete spin crossover (SCO) behavior because of a freezing-in effect, whereas 3 and 4B undergo gradual and incomplete SCO behaviors. Complexes 2 and 4 show a completely gradual and steep SCO, respectively. Such different SCO behaviors can be attributed to an electronic substituent effect in the bipyridyl ligand conformation and a crystal packing effect. Importantly, the electronic substituent effect of the isopropyl acetate group and C-H···O supramolecular interactions in 4 contribute to a highly cooperative behavior, which leads to an abrupt thermally induced spin transition.

12.
Chem Res Toxicol ; 30(2): 583-594, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27966929

RESUMO

Long-term exposure to estrogens seriously increases the incidence of various diseases including breast cancer. Experimental studies indicate that cytochrome P450 (CYP) enzymes catalyze the bioactivation of estrogens to catechols, which can exert their harmful effects via various routes. It has been shown that the 4-hydroxylation pathway of estrogens is the most malign, while 2-hydroxylation is considered a benign pathway. It is also known experimentally that with increasing unsaturation of ring B of estrogens the prevalence of the 4-hydroxylation pathway significantly increases. In this study, we used a combination of structural analysis, docking, and quantum chemical calculations at the B3LYP/6-311+G* level to investigate the factors that influence the regioselectivity of estrogen metabolism in man. We studied the structure of human estrogen metabolizing enzymes (CYP1A1, CYP1A2, CYP1B1, and CYP3A4) in complex with estrone using docking and investigated the susceptibility of estrone, equilin, and equilenin (which only differ in the unsaturation of ring B) to undergo 2- and 4-hydroxylation using several models of CYP enzymes (Compound I, methoxy, and phenoxy radical). We found that even the simplest models could account for the experimental difference between the 2- and 4- hydroxylation pathways and thus might be used for fast screening purposes. We also show that reactivity indices, specifically in this case the radical and nucleophilic condensed Fukui functions, also correctly predict the likeliness of estrogen derivatives to undergo 2- or 4-hydroxylation.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Estrogênios/metabolismo , Teoria Quântica , Humanos , Hidroxilação , Simulação de Acoplamento Molecular
13.
Biochemistry ; 55(3): 560-74, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26731489

RESUMO

The key active site residues K185, Y139, D217, D241, D245, and N102 of Thermus thermophilus 3-isopropylmalate dehydrogenase (Tt-IPMDH) have been replaced, one by one, with Ala. A drastic decrease in the kcat value (0.06% compared to that of the wild-type enzyme) has been observed for the K185A and D241A mutants. Similarly, the catalytic interactions (Km values) of these two mutants with the substrate IPM are weakened by more than 1 order of magnitude. The other mutants retained some (1-13%) of the catalytic activity of the wild-type enzyme and do not exhibit appreciable changes in the substrate Km values. The pH dependence of the wild-type enzyme activity (pK = 7.4) is shifted toward higher values for mutants K185A and D241A (pK values of 8.4 and 8.5, respectively). For the other mutants, smaller changes have been observed. Consequently, K185 and D241 may constitute a proton relay system that can assist in the abstraction of a proton from the OH group of IPM during catalysis. Molecular dynamics simulations provide strong support for the neutral character of K185 in the resting state of the enzyme, which implies that K185 abstracts the proton from the substrate and D241 assists the process via electrostatic interactions with K185. Quantum mechanics/molecular mechanics calculations revealed a significant increase in the activation energy of the hydride transfer of the redox step for both D217A and D241A mutants. Crystal structure analysis of the molecular contacts of the investigated residues in the enzyme-substrate complex revealed their additional importance (in particular that of K185, D217, and D241) in stabilizing the domain-closed active conformation. In accordance with this, small-angle X-ray scattering measurements indicated the complete absence of domain closure in the cases of D217A and D241A mutants, while only partial domain closure could be detected for the other mutants. This suggests that the same residues that are important for catalysis are also essential for inducing domain closure.


Assuntos
3-Isopropilmalato Desidrogenase/química , Proteínas de Bactérias/química , Thermus thermophilus/enzimologia , 3-Isopropilmalato Desidrogenase/genética , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Estrutura Terciária de Proteína , Teoria Quântica , Espalhamento a Baixo Ângulo , Raios X
14.
J Chem Inf Model ; 55(3): 564-71, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25668288

RESUMO

Atomic charges are a key concept to give more insight into the electronic structure and chemical reactivity. The Hirshfeld-I partitioning scheme applied to the model protein human 2-cysteine peroxiredoxin thioredoxin peroxidase B is used to investigate how large a protein fragment needs to be in order to achieve convergence of the atomic charge of both neutral and negatively charged residues. Convergence in atomic charges is rapidly reached for neutral residues, but not for negatively charged ones. This study pinpoints difficulties on the road toward accurate modeling of negatively charged residues of large biomolecular systems in a multiscale approach.


Assuntos
Peroxidase/química , Peroxirredoxinas/química , Cisteína/química , Humanos , Modelos Moleculares , Peroxidase/metabolismo , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 108(15): 6050-5, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444768

RESUMO

Cytochrome P450 enzymes play key roles in the metabolism of the majority of drugs. Improved models for prediction of likely metabolites will contribute to drug development. In this work, two possible metabolic routes (aromatic carbon oxidation and O-demethylation) of dextromethorphan are compared using molecular dynamics (MD) simulations and density functional theory (DFT). The DFT results on a small active site model suggest that both reactions might occur competitively. Docking and MD studies of dextromethorphan in the active site of P450 2D6 show that the dextromethorphan is located close to heme oxygen in a geometry apparently consistent with competitive metabolism. In contrast, calculations of the reaction path in a large protein model [using a hybrid quantum mechanical-molecular mechanics (QM/MM) method] show a very strong preference for O-demethylation, in accordance with experimental results. The aromatic carbon oxidation reaction is predicted to have a high activation energy, due to the active site preventing formation of a favorable transition-state structure. Hence, the QM/MM calculations demonstrate a crucial role of many active site residues in determining reactivity of dextromethorphan in P450 2D6. Beyond substrate binding orientation and reactivity of Compound I, successful metabolite predictions must take into account the detailed mechanism of oxidation in the protein. These results demonstrate the potential of QM/MM methods to investigate specificity in drug metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Dextrometorfano/química , Dextrometorfano/farmacocinética , Domínio Catalítico , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Oxirredução , Relação Quantitativa Estrutura-Atividade , Teoria Quântica
16.
Dalton Trans ; 53(4): 1449-1459, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37909312

RESUMO

Discrete spin crossover (SCO) tetranuclear cages are a unique class of materials that have potential use in next-generation molecular recognition and sensing. In this work, two new edge-bridged SCO FeII4L6 (L = 2,7-bis(((E)-pyridin-2-ylmethylene)amino)benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) supramolecular cages with different counter anions: ClO4- (2) and CF3SO3- (3) were constructed via subcomponent self-assembly to investigate both solvent and anion influences on their magnetic properties and compare them to cage 1 with a BF4- anion. Pyridyl-hydrazone bidentate ligand scaffolds were employed to replace the 'classical' imidazole/thiazolyl-imine coordination units to induce SCO behaviour in these cages. 2 and 3 were structurally characterized by single-crystal X-ray diffraction analysis and electrospray ionization time-of-flight mass spectrometry. Magnetic susceptibilities of 1-3 and 1-3·desolvated indicate that the solvents' presence is in favor of the low-spin (LS) state. While different counter anions in 1-3·desolvated affect the spin-state configurations of the four FeII metal centers. According to the 57Fe Mössbauer spectral analysis, the spin-state distributions in 1-3 at 80 K are [2 high-spin (HS)-2LS], [1HS-3LS] and [2HS-2LS], respectively and density functional theory calculations were employed to investigate the reasons. These findings provide insights to regulate the spin-state versatility of SCO FeII cage systems in the solid state.

17.
Transl Psychiatry ; 14(1): 156, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509087

RESUMO

Automatically extracted measures of speech constitute a promising marker of psychosis as disorganized speech is associated with psychotic symptoms and predictive of psychosis-onset. The potential of speech markers is, however, hampered by (i) lengthy assessments in laboratory settings and (ii) manual transcriptions. We investigated whether a short, scalable data collection (online) and processing (automated transcription) procedure would provide data of sufficient quality to extract previously validated speech measures. To evaluate the fit of our approach for purpose, we assessed speech in relation to psychotic-like experiences in the general population. Participants completed an 8-minute-long speech task online. Sample 1 included measures of psychometric schizotypy and delusional ideation (N = 446). Sample 2 included a low and high psychometric schizotypy group (N = 144). Recordings were transcribed both automatically and manually, and connectivity, semantic, and syntactic speech measures were extracted for both types of transcripts. 73%/86% participants in sample 1/2 completed the experiment. Nineteen out of 25 speech measures were strongly (r > 0.7) and significantly correlated between automated and manual transcripts in both samples. Amongst the 14 connectivity measures, 11 showed a significant relationship with delusional ideation. For the semantic and syntactic measures, On Topic score and the Frequency of personal pronouns were negatively correlated with both schizotypy and delusional ideation. Combined with demographic information, the speech markers could explain 11-14% of the variation of delusional ideation and schizotypy in Sample 1 and could discriminate between high-low schizotypy with high accuracy (0.72-0.70, AUC = 0.78-0.79) in Sample 2. The moderate to high retention rate, strong correlation of speech measures across manual and automated transcripts and sensitivity to psychotic-like experiences provides initial evidence that online collected speech in combination with automatic transcription is a feasible approach to increase accessibility and scalability of speech-based assessment of psychosis.


Assuntos
Transtornos Psicóticos , Transtorno da Personalidade Esquizotípica , Humanos , Fala , Transtornos Psicóticos/complicações , Transtorno da Personalidade Esquizotípica/complicações , Transtorno da Personalidade Esquizotípica/diagnóstico
18.
Phys Chem Chem Phys ; 15(36): 15163-71, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23925551

RESUMO

Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and Erdos-Rényi random networks. Various characteristic properties (e.g. the local cyclic and bonding coefficients) of the network in liquid water could be reproduced by small world and/or Erdos-Rényi networks, but the ring size distribution of water is unique and none of the studied graph models could describe it. Using the inverse participation ratio of the Laplacian eigenvectors we characterized the network inhomogeneities found in water and showed that similar phenomena can be observed in Erdos-Rényi and small world graphs. We demonstrated that the topological properties of the hydrogen bond network found in liquid water systematically change with the temperature and that increasing temperature leads to a broader ring size distribution. We applied the studied topological indices to the network of water molecules with four hydrogen bonds, and showed that at low temperature (250 K) these molecules form a percolated or nearly-percolated network, while at ambient or high temperatures only small clusters of four-hydrogen bonded water molecules exist.


Assuntos
Metanol/química , Simulação de Dinâmica Molecular , Água/química , Ligação de Hidrogênio
19.
Front Psychiatry ; 14: 1265880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38361830

RESUMO

Automated speech analysis techniques, when combined with artificial intelligence and machine learning, show potential in capturing and predicting a wide range of psychosis symptoms, garnering attention from researchers. These techniques hold promise in predicting the transition to clinical psychosis from at-risk states, as well as relapse or treatment response in individuals with clinical-level psychosis. However, challenges in scientific validation hinder the translation of these techniques into practical applications. Although sub-clinical research could aid to tackle most of these challenges, there have been only few studies conducted in speech and psychosis research in non-clinical populations. This work aims to facilitate this work by summarizing automated speech analytical concepts and the intersection of this field with psychosis research. We review psychosis continuum and sub-clinical psychotic experiences, and the benefits of researching them. Then, we discuss the connection between speech and psychotic symptoms. Thirdly, we overview current and state-of-the art approaches to the automated analysis of speech both in terms of language use (text-based analysis) and vocal features (audio-based analysis). Then, we review techniques applied in subclinical population and findings in these samples. Finally, we discuss research challenges in the field, recommend future research endeavors and outline how research in subclinical populations can tackle the listed challenges.

20.
Schizophr Res ; 259: 11-19, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37080802

RESUMO

BACKGROUND: Remote assessment of acoustic alterations in speech holds promise to increase scalability and validity in research across the psychosis spectrum. A feasible first step in establishing a procedure for online assessments is to assess acoustic alterations in psychometric schizotypy. However, to date, the complex relationship between alterations in speech related to schizotypy and those related to comorbid conditions such as symptoms of depression and anxiety has not been investigated. This study tested whether (1) depression, generalized anxiety and high psychometric schizotypy have similar voice characteristics, (2) which acoustic markers of online collected speech are the strongest predictors of psychometric schizotypy, (3) whether including generalized anxiety and depression symptoms in the model can improve the prediction of schizotypy. METHODS: We collected cross-sectional, online-recorded speech data from 441 participants, assessing demographics, symptoms of depression, generalized anxiety and psychometric schizotypy. RESULTS: Speech samples collected online could predict psychometric schizotypy, depression, and anxiety symptoms with weak to moderate predictive power, and with moderate and good predictive power when basic demographic variables were added to the models. Most influential features of these models largely overlapped. The predictive power of speech marker-based models of schizotypy significantly improved after including symptom scores of depression and generalized anxiety in the models (from R2 = 0.296 to R2 = 0. 436). CONCLUSIONS: Acoustic features of online collected speech are predictive of psychometric schizotypy as well as generalized anxiety and depression symptoms. The acoustic characteristics of schizotypy, depression and anxiety symptoms significantly overlap. Speech models that are designed to predict schizotypy or symptoms of the schizophrenia spectrum might therefore benefit from controlling for symptoms of depression and anxiety.


Assuntos
Transtorno da Personalidade Esquizotípica , Humanos , Transtorno da Personalidade Esquizotípica/complicações , Transtorno da Personalidade Esquizotípica/diagnóstico , Depressão/diagnóstico , Fala , Estudos Transversais , Ansiedade/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA