RESUMO
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Assuntos
Eletroforese Capilar , Eletroforese em Microchip , Eletroforese Capilar/métodos , Proteínas , Preparações FarmacêuticasRESUMO
A new capillary zone electrophoresis method for collagen quantitation was developed and validated according to the International Council for Harmonization guideline Q2 (R1). The Sircol collagen assay and ultraviolet spectrometry were employed as reference methods. Capillary zone electrophoresis enables specific, simple, and fast determination within 9 min. It is less user-dependent and more automated than the Sircol collagen assay. With a limit of detection of 18.0 µg/mL, the new method is less sensitive than the Sircol collagen assay, which has a limit of detection of 6.5 µg/mL. Nonetheless, capillary zone electrophoresis covers a wider linearity range (50-400 µg/mL) compared to the Sircol collagen assay (5-80 µg/mL), with similar precision. Additional advantages of capillary zone electrophoresis are the ability to gain information on collagen integrity and to simultaneously determine native and denatured collagens. This approach represents a modern and legitimate alternative to the Sircol collagen assay. The developed method has been successfully applied to the study of three collagen products and samples from forced degradation.
Assuntos
Colágeno , Eletroforese Capilar , Eletroforese Capilar/métodos , Espectrofotometria UltravioletaRESUMO
Affinity capillary electrophoresis (ACE) analyzes noncovalent interactions between ligands and analytes based on changes in their electrophoretic mobility. This technique has been widely used to investigate various biomolecules, mainly proteins, polysaccharides and hormones. ACE is becoming a technique of choice to validate high throughput screening results, since it is very predictively working in realistic and relevant media, e.g. in body fluids. It is highly recommended to incorporate ACE as a powerful analytical tool to properly prepare animal testing and preclinical studies. The interacting molecules can be found free in solution or can be immobilized to a solid support. Thus, ACE is classified in two modes, free solution ACE and immobilized ACE. Every ACE mode has advantages and disadvantages. Each can be used for a variety of applications. This review covers literature of scopus and SciFinder data base in the period from 2016 until beginning 2018, including the keywords "affinity capillary electrophoresis", "immunoaffinity capillary electrophoresis", "immunoassay capillary electrophoresis" and "immunosorbent capillary electrophoresis". More than 200 articles have been found and 112 have been selected and thoroughly discussed. During this period, the data processing and the underlying calculations in mobility shift ACE (ms ACE), frontal analysis ACE (FA ACE) and plug-plug kinetic capillary electrophoresis (ppKCE) as mostly applied free solution techniques have substantially improved. The range of applications in diverse free solution and immobilized ACE techniques has been considerably broadened.