Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833871

RESUMO

The human quest for sustainable habitation of extraterrestrial environments necessitates a robust understanding of life's adaptability to the unique conditions of spaceflight. This study provides a comprehensive proteomic dissection of the Arabidopsis plant's responses to the spaceflight environment through a meta-analysis of proteomics data from four separate spaceflight experiments conducted on the International Space Station (ISS) in different hardware configurations. Raw proteomics LC/MS spectra were analyzed for differential expression in MaxQuant and Perseus software. The analysis of dissimilarities among the datasets reveals the multidimensional nature of plant proteomic responses to spaceflight, impacted by variables such as spaceflight hardware, seedling age, lighting conditions, and proteomic quantification techniques. By contrasting datasets that varied in light exposure, we elucidated proteins involved in photomorphogenesis and skotomorphogenesis in plant spaceflight responses. Additionally, with data from an onboard 1 g control experiment, we isolated proteins that specifically respond to the microgravity environment and those that respond to other spaceflight conditions. This study identified proteins and associated metabolic pathways that are consistently impacted across the datasets. Notably, these shared proteins were associated with critical metabolic functions, including carbon metabolism, glycolysis, gluconeogenesis, and amino acid biosynthesis, underscoring their potential significance in Arabidopsis' spaceflight adaptation mechanisms and informing strategies for successful space farming.


Assuntos
Arabidopsis , Voo Espacial , Ausência de Peso , Humanos , Arabidopsis/metabolismo , Plântula/fisiologia , Proteômica
2.
Front Plant Sci ; 14: 1260429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089794

RESUMO

Spaceflight presents a unique environment with complex stressors, including microgravity and radiation, that can influence plant physiology at molecular levels. Combining transcriptomics and proteomics approaches, this research gives insights into the coordination of transcriptome and proteome in Arabidopsis' molecular and physiological responses to Spaceflight environmental stress. Arabidopsis seedlings were germinated and grown in microgravity (µg) aboard the International Space Station (ISS) in NASA Biological Research in Canisters - Light Emitting Diode (BRIC LED) hardware, with the ground control established on Earth. At 10 days old, seedlings were frozen in RNA-later and returned to Earth. RNA-seq transcriptomics and TMT-labeled LC-MS/MS proteomic analysis of cellular fractionates from the plant tissues suggest the alteration of the photosynthetic machinery (PSII and PSI) in spaceflight, with the plant shifting photosystem core-regulatory proteins in an organ-specific manner to adapt to the microgravity environment. An overview of the ribosome, spliceosome, and proteasome activities in spaceflight revealed a significant abundance of transcripts and proteins involved in protease binding, nuclease activities, and mRNA binding in spaceflight, while those involved in tRNA binding, exoribonuclease activity, and RNA helicase activity were less abundant in spaceflight. CELLULOSE SYNTHASES (CESA1, CESA3, CESA5, CESA7) and CELLULOSE-LIKE PROTEINS (CSLE1, CSLG3), involved in cellulose deposition and TUBULIN COFACTOR B (TFCB) had reduced abundance in spaceflight. This contrasts with the increased expression of UDP-ARABINOPYRANOSE MUTASEs, involved in the biosynthesis of cell wall non-cellulosic polysaccharides, in spaceflight. Both transcripts and proteome suggested an altered polar auxin redistribution, lipid, and ionic intracellular transportation in spaceflight. Analyses also suggest an increased metabolic energy requirement for plants in Space than on Earth, hence, the activation of several shunt metabolic pathways. This study provides novel insights, based on integrated RNA and protein data, on how plants adapt to the spaceflight environment and it is a step further at achieving sustainable crop production in Space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA