Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hered ; 114(6): 587-597, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37578073

RESUMO

The 20th century commercial whaling industry severely reduced populations of great whales throughout the Southern Hemisphere. The effect of this exploitation on genetic diversity and population structure remains largely undescribed. Here, we compare pre- and post-whaling diversity of mitochondrial DNA (mtDNA) control region sequences for 3 great whales in the South Atlantic, such as the blue, humpback, and fin whale. Pre-whaling diversity is described from mtDNA extracted from bones collected near abandoned whaling stations, primarily from the South Atlantic island of South Georgia. These bones are known to represent the first stage of 20th century whaling and thus pre-whaling diversity of these populations. Post-whaling diversity is described from previously published studies reporting large-scale sampling of living whales in the Southern Hemisphere. Despite relatively high levels of surviving genetic diversity in the post-whaling populations, we found evidence of a probable loss of mtDNA lineages in all 3 species. This is evidenced by the detection of a large number of haplotypes found in the pre-whaling samples that are not present in the post-whaling samples. A rarefaction analysis further supports a loss of haplotypes in the South Atlantic humpback and Antarctic blue whale populations. The bones from former whaling stations in the South Atlantic represent a remarkable molecular archive for further investigation of the decline and ongoing recovery in the great whales of the Southern Hemisphere.


Assuntos
DNA Mitocondrial , Baleias , Animais , Baleias/genética , DNA Mitocondrial/genética , Regiões Antárticas
2.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850919

RESUMO

Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550-1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies.


Assuntos
Actinas/genética , Variação Genética , Jubarte/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Evolução Molecular , Haplótipos , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Análise de Sequência de DNA
3.
J Acoust Soc Am ; 135(3): 1616-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24606296

RESUMO

Previous underwater recordings made in New Zealand have identified a complex sequence of low frequency sounds that have been attributed to blue whales based on similarity to blue whale songs in other areas. Recordings of sounds with these characteristics were made opportunistically during the Southern Ocean Research Partnership's recent Antarctic Blue Whale Voyage. Detections of these sounds occurred all around the South Island of New Zealand during the voyage transits from Nelson, New Zealand to the Antarctic and return. By following acoustic bearings from directional sonobuoys, blue whales were visually detected and confirmed as the source of these sounds. These recordings, together with the historical recordings made northeast of New Zealand, indicate song types that persist over several decades and are indicative of the year-round presence of a population of blue whales that inhabits the waters around New Zealand. Measurements of the four-part vocalizations reveal that blue whale song in this region has changed slowly, but consistently over the past 50 years. The most intense units of these calls were detected as far south as 53°S, which represents a considerable range extension compared to the limited prior data on the spatial distribution of this population.


Assuntos
Acústica , Balaenoptera/fisiologia , Vocalização Animal , Animais , Balaenoptera/classificação , Nova Zelândia , Oceanos e Mares , Densidade Demográfica , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo , Vocalização Animal/classificação
4.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237561

RESUMO

Cetacean strandings are a valuable source of information for several studies from species richness to conservation and management. During the examination of strandings, taxonomic and sex identification might be hindered for several reasons. Molecular techniques are valuable tools to obtain that missing information. This study evaluates how gene fragment amplification protocols can support the records of strandings done in the field in Chile by identifying, corroborating, or correcting the identification of the species and sex of the recorded individuals. Through a collaboration between a scientific laboratory and government institution in Chile, 63 samples were analyzed. Thirty-nine samples were successfully identified to the species level. In total, 17 species of six families were detected, including six species of conservation interest. Of the 39 samples, 29 corresponded to corroborations of field identifications. Seven corresponded to unidentified samples and three to corrected misidentifications, adding up to 28% of the identified samples. Sex was successfully identified for 58 of the 63 individuals. Twenty were corroborations, 34 were previously unidentified, and four were corrections. Applying this method improves the stranding database of Chile and provides new data for future management and conservation tasks.

5.
BMC Evol Biol ; 11: 53, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356052

RESUMO

BACKGROUND: A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (Lontra provocax). RESULTS: We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of L. provocax from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for L. provocax in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes. CONCLUSIONS: Our data support the hypothesis of the persistence of L. provocax in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred L. provocax differentiation between the two environments.


Assuntos
Ecossistema , Genética Populacional , Lontras/genética , Filogeografia , Adaptação Biológica/genética , Animais , Argentina , Chile , DNA Mitocondrial/genética , Haplótipos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
6.
Sci Rep ; 10(1): 1769, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019997

RESUMO

The matrilineal long-finned pilot whale presents an antitropical distribution and is divided into two subspecies, one in the temperate seas of the Southern Hemisphere and the other restricted to the North Atlantic and Mediterranean. Until now, population genetic and phylogeographic studies have included localities of most of its Northern Hemisphere distribution, while only the southwestern Pacific has been sampled in the Southern Hemisphere. We add new genetic data from the southeastern Pacific to the published sequences. Low mitochondrial and nuclear diversity was encountered in this new area, as previously reported for other localities. Four haplotypes were found with only one new for the species. Fifteen haplotypes were detected in the global dataset, underlining the species' low diversity. As previously reported, the subspecies shared two haplotypes and presented a strong phylogeographic structure. The extant distribution of this species has been related to dispersal events during the Last Glacial Maximum. Using the genetic data and Approximate Bayesian Calculations, this study supports this historical biogeographic scenario. From a taxonomic perspective, even if genetic analyses do not support the subspecies category, this study endorses the incipient divergence process between hemispheres, thus maintaining their status and addressing them as Demographically Independent Populations is recommended.


Assuntos
Variação Genética , Filogeografia , Baleias Piloto/genética , Animais , Fluxo Gênico , Haplótipos , Oceano Pacífico
7.
J Hered ; 100(1): 11-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18495650

RESUMO

Bottlenose dolphins (Tursiops truncatus) occupy a wide range of coastal and pelagic habitats throughout tropical and temperate waters worldwide. In some regions, "inshore" and "offshore" forms or ecotypes differ genetically and morphologically, despite no obvious boundaries to interchange. Around New Zealand, bottlenose dolphins inhabit 3 coastal regions: Northland, Marlborough Sounds, and Fiordland. Previous demographic studies showed no interchange of individuals among these populations. Here, we describe the genetic structure and diversity of these populations using skin samples collected with a remote biopsy dart. Analysis of the molecular variance from mitochondrial DNA (mtDNA) control region sequences (n = 193) showed considerable differentiation among populations (F(ST) = 0.17, Phi(ST) = 0.21, P < 0.001) suggesting little or no female gene flow or interchange. All 3 populations showed higher mtDNA diversity than expected given their small population sizes and isolation. To explain the source of this variation, 22 control region haplotypes from New Zealand were compared with 108 haplotypes worldwide representing 586 individuals from 19 populations and including both inshore and offshore ecotypes as described in the Western North Atlantic. All haplotypes found in the Pacific, regardless of population habitat use (i.e., coastal or pelagic), are more divergent from populations described as inshore ecotype in the Western North Atlantic than from populations described as offshore ecotype. Analysis of gene flow indicated long-distance dispersal among coastal and pelagic populations worldwide (except for those haplotypes described as inshore ecotype in the Western North Atlantic), suggesting that these populations are interconnected on an evolutionary timescale. This finding suggests that habitat specialization has occurred independently in different ocean basins, perhaps with Tursiops aduncus filling the ecological niche of the inshore ecotype in some coastal regions of the Indian and Western Pacific Oceans.


Assuntos
Golfinhos/genética , Variação Genética , Migração Animal , Animais , Demografia , Golfinhos/classificação , Evolução Molecular , Fluxo Gênico , Genética Populacional , Nova Zelândia , Oceano Pacífico , Filogenia
9.
PLoS One ; 14(10): e0222498, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622348

RESUMO

We test the ability of Very High Resolution satellite (VHR) imagery to detect stranded whales using both manual and automated methods. We use the 2015 mass mortality event in the Gulf of Penas locality, central Patagonia, Chile, as an initial case study. This event was the largest known mass mortality of baleen whales, with at least 343 whales, mainly sei whales (Balaenoptera borealis), documented as stranding. However, even with such a large number of whales, due to the remote location of the gulf the strandings went unrecorded for several weeks. Aerial and boat surveys of the area were conducted two to four months after the mortality event. In this study we use 50cm resolution WorldView2 imagery to identify and count strandings from two archival images acquired just after the stranding event and two months before the aerial and ground surveys, and to test manual and automated methods of detecting stranded whales. Our findings show that whales are easily detected manually in the images but due to the heterogeneous colouration of decomposing whales, spectral indices are unsuitable for automatic detection. Our satellite counts suggest that, at the time the satellite images were taken, more whales were stranded than recorded in the aerial survey, possibly due to the non-comprehensive coverage of the aerial survey or movement of the carcases between survey acquisition. With even higher resolution imagery now available, satellite imagery may be a cost effective alternative to aerial surveys for future assessment of the extent of mass whale stranding events, especially in remote and inaccessible areas.


Assuntos
Balaenoptera/fisiologia , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Animais , Chile , Humanos , Mortalidade , Imagens de Satélites/métodos
10.
PeerJ ; 5: e3123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30038848

RESUMO

While large mass mortality events (MMEs) are well known for toothed whales, they have been rare in baleen whales due to their less gregarious behavior. Although in most cases the cause of mortality has not been conclusively identified, some baleen whale mortality events have been linked to bio-oceanographic conditions, such as harmful algal blooms (HABs). In Southern Chile, HABs can be triggered by the ocean-atmosphere phenomenon El Niño. The frequency of the strongest El Niño events is increasing due to climate change. In March 2015, by far the largest reported mass mortality of baleen whales took place in a gulf in Southern Chile. Here, we show that the synchronous death of at least 343, primarily sei whales can be attributed to HABs during a building El Niño. Although considered an oceanic species, the sei whales died while feeding near to shore in previously unknown large aggregations. This provides evidence of new feeding grounds for the species. The combination of older and newer remains of whales in the same area indicate that MMEs have occurred more than once in recent years. Large HABs and reports of marine mammal MMEs along the Northeast Pacific coast may indicate similar processes in both hemispheres. Increasing MMEs through HABs may become a serious concern in the conservation of endangered whale species.

11.
PLoS One ; 12(6): e0179442, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28654647

RESUMO

The South American sea lion (Otaria flavescens) is widely distributed along the southern Atlantic and Pacific coasts of South America with a history of significant commercial exploitation. We aimed to evaluate the population genetic structure and the evolutionary history of South American sea lion along its distribution by analyses of mitochondrial DNA (mtDNA) and 10 nuclear microsatellites loci. We analyzed 147 sequences of mtDNA control region and genotyped 111 individuals of South American sea lion for 10 microsatellite loci, representing six populations (Peru, Northern Chile, Southern Chile, Uruguay (Brazil), Argentina and Falkland (Malvinas) Islands) and covering the entire distribution of the species. The mtDNA phylogeny shows that haplotypes from the two oceans comprise two very divergent clades as observed in previous studies, suggesting a long period (>1 million years) of low inter-oceanic female gene flow. Bayesian analysis of bi-parental genetic diversity supports significant (but less pronounced than mitochondrial) genetic structure between Pacific and Atlantic populations, although also suggested some inter-oceanic gene flow mediated by males. Higher male migration rates were found in the intra-oceanic population comparisons, supporting very high female philopatry in the species. Demographic analyses showed that populations from both oceans went through a large population expansion ~10,000 years ago, suggesting a very similar influence of historical environmental factors, such as the last glacial cycle, on both regions. Our results support the proposition that the Pacific and Atlantic populations of the South American sea lion should be considered distinct evolutionarily significant units, with at least two managements units in each ocean.


Assuntos
Migração Animal/fisiologia , DNA Mitocondrial/genética , Fluxo Gênico , Leões-Marinhos/genética , Animais , Feminino , Variação Genética , Genética Populacional , Masculino , Oceanos e Mares , Filogenia , Dinâmica Populacional , América do Sul
12.
PLoS One ; 10(4): e0123956, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898340

RESUMO

Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02'S) to Chiloé (42°00'S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14'S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.


Assuntos
Golfinhos/genética , Repetições de Microssatélites , Animais , Chile , Feminino , Masculino , Filogeografia
13.
Proc Biol Sci ; 269(1499): 1467-73, 2002 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-12137576

RESUMO

A low level of genetic variation in mammalian populations where the census population size is relatively large has been attributed to various factors, such as a naturally small effective population size, historical bottlenecks and social behaviour. The killer whale (Orcinus orca) is an abundant, highly social species with reduced genetic variation. We find no consistent geographical pattern of global diversity and no mtDNA variation within some regional populations. The regional lack of variation is likely to be due to the strict matrilineal expansion of local populations. The worldwide pattern and paucity of diversity may indicate a historical bottleneck as an additional factor.


Assuntos
Golfinhos/genética , Variação Genética , Genética Populacional , Alelos , Animais , Sequência de Bases , DNA Mitocondrial/genética , Haplótipos/genética , Filogenia , Reação em Cadeia da Polimerase , Dinâmica Populacional , Alinhamento de Sequência
14.
Biol Bull ; 206(3): 125-33, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15198938

RESUMO

We have employed electron microscopic, biochemical, and molecular techniques to clarify the species of origin of the "Chilean Blob," the remains of a large sea creature that beached on the Chilean coast in July 2003. Electron microscopy revealed that the remains are largely composed of an acellular, fibrous network reminiscent of the collagen fiber network in whale blubber. Amino acid analyses of an acid hydrolysate indicated that the fibers are composed of 31% glycine residues and also contain hydroxyproline and hydroxylysine, all diagnostic of collagen. Using primers designed to the mitochondrial gene nad2, an 800-bp product of the polymerase chain reaction (PCR) was amplified from DNA that had been purified from the carcass. The DNA sequence of the PCR product was 100% identical to nad2 of sperm whale (Physeter catadon). These results unequivocally demonstrate that the Chilean Blob is the almost completely decomposed remains of the blubber layer of a sperm whale. This identification is the same as those we have obtained before from other relics such as the so-called giant octopus of St. Augustine (Florida), the Tasmanian West Coast Monster, two Bermuda Blobs, and the Nantucket Blob. It is clear now that all of these blobs of popular and cryptozoological interest are, in fact, the decomposed remains of large cetaceans.


Assuntos
Colágeno/ultraestrutura , Mudanças Depois da Morte , Baleias/anatomia & histologia , Baleias/genética , Aminoácidos/análise , Animais , Sequência de Bases , Colágeno/análise , DNA Mitocondrial/genética , Ácido Clorídrico , Hidrólise , Microscopia Eletrônica , Dados de Sequência Molecular , Oceanos e Mares , Análise de Sequência de DNA
15.
Dermatol. venez ; 32(3): 111-22, 1994. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-163442

RESUMO

Se evalúan 22 pacientes que se le han realizado transplante de médula ósea en el período 1987-1993 y se le practica evaluación clínica dermatológica antes y después del transplante. Se encontró que el 73,17 por ciento de los pacientes presentaron hallazgos dermatológicos compatibles con "enfermedad injerto contra huésped" en forma aguda y/o crónica


Assuntos
Humanos , Masculino , Feminino , Transplante de Medula Óssea/efeitos adversos , Doença Enxerto-Hospedeiro/patologia , Manifestações Cutâneas , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA