RESUMO
ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.
Assuntos
Carcinoma , Endometriose , Neoplasias Ovarianas , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Encefálicas , Linfócitos T CD8-Positivos/patologia , Canadá , Neoplasias Colorretais , Proteínas de Ligação a DNA/genética , Endometriose/genética , Endometriose/patologia , Feminino , Humanos , Síndromes Neoplásicas Hereditárias , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: HER2 is an important prognostic and therapeutic target in uterine serous carcinoma (USC). Optimal HER2 testing platforms have not been defined and guidelines for testing have changed over time. Our objective is to assess the concordance of HER2 positivity based on chromogenic in situ hybridization (CISH), immunohistochemistry (IHC), and next generation sequencing (NGS) and to determine the rate of downstream mutations that may affect response to HER2 directed therapy. METHODS: Utilizing the Caris tumor registry, 2192 USC tumors were identified and analyzed using NGS (NextSeq, 592 Genes and WES, NovaSEQ), IHC, and CISH. PD-L1 expression was tested by IHC. Microsatellite instability was tested by fragment analysis, IHC, and NGS. Tumor mutational burden (TMB) was measured by totaling somatic mutations per tumor. HER2 positivity through IHC and CISH was determined based on 2007 and 2018 ASCO/CAP HER2 breast cancer guidelines. RESULTS: There was a higher rate of HER2 positivity by IHC when using the 2018 guidelines compared to the 2007 guidelines (16.3% vs 12.3%). Concordance between IHC and CISH was 98.9%. ERBB2 amplification was identified by NGS in 10.5% of tumors. Compared to CISH results, this corresponds to a concordance rate of 91.6% and a positive predictive value (PPV) of 60.3%. Single gene alterations in HER2 amplified tumors that may implicate HER2 therapy resistance included PI3K (33.1%), KRAS (2.5%), and PTEN (1.3%). CONCLUSIONS: There was high concordance between HER2 positivity based on CISH and IHC. Rate of HER2 positivity is the lowest by NGS. Ultimately these testing platforms need to be validated by response to targeted therapy.
Assuntos
Cistadenocarcinoma Seroso , Receptor ErbB-2 , Neoplasias Uterinas , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Amplificação de Genes , Hibridização In Situ , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologiaRESUMO
To gain insight into the mechanism(s) by which leptin contributes to mammary tumor (MT) development we investigated the effects of leptin, kinase inhibitors, and/or leptin receptor antagonists (LPrA2) on 4T1 mouse mammary cancer cells in vitro and LPrA2 on 4T1-MT development in vivo. Leptin increases the expression of vascular endothelial growth factor (VEGF), its receptor (VEGF-R2), and cyclin D1 through phosphoinositide 3-kinase, Janus kinase 2/signal transducer and activator of transcription 3, and/or extracellular signal-activated kinase 1/2 signaling pathways. In contrast to leptin-induced levels of cyclin D1 the changes in VEGF or VEGF-R2 were more dependent on specific signaling pathways. Incubation of 4T1 cells with anti-VEGF-R2 antibody increased leptin-mediated VEGF expression suggesting an autocrine/paracrine loop. Pretreatment of syngeneic mice with LPrA2 prior to inoculation with 4T1 cells delayed the development and slowed the growth of MT (up to 90%) compared with controls. Serum VEGF levels and VEGF/VEGF-R2 expression in MT were significantly lower in mice treated with LPrA2. Interestingly, LPrA2-induced effects were more pronounced in vivo than in vitro suggesting paracrine actions in stromal, endothelial, and/or inflammatory cells that may impact the growth of MT. Although all the mechanism(s) by which leptin contributes to tumor development are unknown, it appears leptin stimulates an increase in cell numbers, and the expression of VEGF/VEGF-R2. Together, these results provide further evidence suggesting leptin is a MT growth-promoting factor. The inhibition of leptin signaling could serve as a potential adjuvant therapy for treatment of breast cancer and/or provide a new target for the designing strategies to prevent MT development.