Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 97(2): e0142322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692289

RESUMO

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Assuntos
Doenças dos Bovinos , Interações entre Hospedeiro e Microrganismos , Infecções por Mycoplasma , Infecções por Orthomyxoviridae , Transdução de Sinais , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/veterinária , Receptor 2 Toll-Like , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/virologia
2.
J Infect Dis ; 226(12): 2095-2104, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36031537

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with extensive nonpharmacological interventions, have profoundly altered the epidemiology of major respiratory viruses. Some studies have described virus-virus interactions, particularly manifested by viral interference mechanisms at different scales. However, our knowledge of the interactions between SARS-CoV-2 and other respiratory viruses remains incomplete. Here, we studied the interactions between SARS-CoV-2 and several respiratory viruses (influenza, respiratory syncytial virus, human metapneumovirus, and human rhinovirus) in a reconstituted human epithelial airway model, exploring different scenarios affecting the sequence and timing of coinfections. We show that the virus type and sequence of infections are key factors in virus-virus interactions, the primary infection having a determinant role in the immune response to the secondary infection.


Assuntos
COVID-19 , Coinfecção , Metapneumovirus , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , SARS-CoV-2 , Mucosa Nasal
3.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32611750

RESUMO

Since its detection in swine, influenza D virus (IDV) has been shown to be present in multiple animal hosts, and bovines have been identified as its natural reservoir. However, it remains unclear how IDVs emerge, evolve, spread, and maintain in bovine populations. Through multiple years of virological and serological surveillance in a single order-buyer cattle facility in Mississippi, we showed consistently high seroprevalence of IDVs in cattle and recovered a total of 32 IDV isolates from both healthy and sick animals, including those with antibodies against IDV. Genomic analyses of these isolates along with those isolated from other areas showed that active genetic reassortment occurred in IDV and that five reassortants were identified in the Mississippian facility. Two antigenic groups were identified through antigenic cartography analyses for these 32 isolates and representative IDVs from other areas. Remarkably, existing antibodies could not protect cattle from experimental reinfection with IDV. Additional phenotypic analyses demonstrated variations in growth dynamics and pathogenesis in mice between viruses independent of genomic constellation. In summary, this study suggests that, in addition to epidemiological factors, the ineffectiveness of preexisting immunity and cocirculation of a diverse viral genetic pool could facilitate its high prevalence in animal populations.IMPORTANCE Influenza D viruses (IDVs) are panzootic in multiple animal hosts, but the underlying mechanism is unclear. Through multiple years of surveillance in the same order-buyer cattle facility, 32 IDV isolates were recovered from both healthy and sick animals, including those with evident antibodies against IDV. Active reassortment occurred in the cattle within this facility and in those across other areas, and multiple reassortants cocirculated in animals. These isolates are shown with a large extent of phenotypic diversity in replication efficiency and pathogenesis but little in antigenic properties. Animal experiments demonstrated that existing antibodies could not protect cattle from experimental reinfection with IDV. This study suggests that, in addition to epidemiological factors, limited protection from preexisting immunity against IDVs in cattle herds and cocirculation of a diverse viral genetic pool likely facilitate the high prevalence of IDVs in animal populations.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Genoma Viral , Infecções por Orthomyxoviridae/epidemiologia , Vírus Reordenados/imunologia , Thogotovirus/imunologia , Animais , Bovinos , Monitoramento Epidemiológico , Fazendas , Variação Genética , Genótipo , Hospitais Veterinários , Imunidade Inata , Camundongos , Mississippi/epidemiologia , Tipagem Molecular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Estudos Soroepidemiológicos , Thogotovirus/classificação , Thogotovirus/genética , Thogotovirus/patogenicidade , Replicação Viral
4.
Emerg Infect Dis ; 24(7): 1388-1389, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912692

RESUMO

We detected antibodies against influenza D in 80.2% of the cattle sampled in Luxembourg in 2016, suggesting widespread virus circulation throughout the country. In swine, seroprevalence of influenza D was low but increased from 0% to 5.9% from 2012 to 2014-2015.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/história , Geografia Médica , História do Século XXI , Luxemburgo/epidemiologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/história
6.
Virus Evol ; 8(2): veac081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533151

RESUMO

Influenza D virus (IDV) is an emerging influenza virus that was isolated for the first time in 2011 in the USA from swine with respiratory illness. Since then, IDV has been detected worldwide in different animal species, and it was also reported in humans. Molecular epidemiological studies revealed the circulation of two major clades, named D/OK and D/660. Additional divergent clades have been described but have been limited to specific geographic areas (i.e. Japan and California). In Europe, IDV was detected for the first time in France in 2012 and subsequently also in Italy, Luxembourg, Ireland, the UK, Switzerland, and Denmark. To understand the time of introduction and the evolutionary dynamics of IDV on the continent, molecular screening of bovine and swine clinical samples was carried out in different European countries, and phylogenetic analyses were performed on all available and newly generated sequences. Until recently, D/OK was the only clade detected in this area. Starting from 2019, an increase in D/660 clade detections was observed, accompanied by an increase in the overall viral genetic diversity and genetic reassortments. The time to the most recent common ancestor (tMRCA) of all existing IDV sequences was estimated as 1995-16 years before its discovery, indicating that the virus could have started its global spread in this time frame. Despite the D/OK and D/660 clades having a similar mean tMRCA (2007), the mean tMRCA for European D/OK sequences was estimated as January 2013 compared to July 2014 for European D/660 sequences. This indicated that the two clades were likely introduced on the European continent at different time points, as confirmed by virological screening findings. The mean nucleotide substitution rate of the hemagglutinin-esterase-fusion (HEF) glycoprotein segment was estimated as 1.403 × 10-3 substitutions/site/year, which is significantly higher than the one of the HEF of human influenza C virus (P < 0.0001). IDV genetic drift, the introduction of new clades on the continent, and multiple reassortment patterns shape the increasing viral diversity observed in the last years. Its elevated substitution rate, diffusion in various animal species, and the growing evidence pointing towards zoonotic potential justify continuous surveillance of this emerging influenza virus.

7.
Viruses ; 13(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34578306

RESUMO

Respiratory tract infections constitute a significant public health problem, with a therapeutic arsenal that remains relatively limited and that is threatened by the emergence of antiviral and/or antibiotic resistance. Viral-bacterial co-infections are very often associated with the severity of these respiratory infections and have been explored mainly in the context of bacterial superinfections following primary influenza infection. This review summarizes our current knowledge of the mechanisms underlying these co-infections between respiratory viruses (influenza viruses, RSV, and SARS-CoV-2) and bacteria, at both the physiological and immunological levels. This review also explores the importance of the microbiome and the pathological context in the evolution of these respiratory tract co-infections and presents the different in vitro and in vivo experimental models available. A better understanding of the complex functional interactions between viruses/bacteria and host cells will allow the development of new, specific, and more effective diagnostic and therapeutic approaches.


Assuntos
Coinfecção , Pneumonia Bacteriana/epidemiologia , Pneumonia Viral/epidemiologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Microbiota , Pneumonia Bacteriana/etiologia , Pneumonia Viral/etiologia , Superinfecção
8.
Front Immunol ; 12: 714027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950129

RESUMO

In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in order to adapt the recommendations for populations, as well as to reduce the risk of COVID-19 development in the most vulnerable people, especially patients with chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play a critical role in the modulation of both immune responses and COVID-19 severity. SARS-CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2 expression, notably in primary AECs with deficiency of the ion channel CF transmembrane conductance regulator (CFTR). Further, we show that the main component of P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an intracellular increased level of SARS-CoV-2 infection, however, with no effect on the amount of virus particles released. Considering the urgency of the COVID-19 health crisis, this result may be of clinical significance for CF patients, who are frequently infected with and colonized by P. aeruginosa during the course of CF and might develop COVID-19.


Assuntos
Fibrose Cística , Flagelina/metabolismo , Infecções por Pseudomonas/complicações , Mucosa Respiratória/virologia , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , COVID-19/complicações , Células Cultivadas , Humanos , Pseudomonas aeruginosa , Mucosa Respiratória/metabolismo
9.
bioRxiv ; 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32743571

RESUMO

Due to the lack of protective immunity of humans towards the newly emerged SARS-CoV-2, this virus has caused a massive pandemic across the world resulting in hundreds of thousands of deaths. Thus, a vaccine is urgently needed to contain the spread of the virus. Here, we describe Newcastle disease virus (NDV) vector vaccines expressing the spike protein of SARS-CoV-2 in its wild type or a pre-fusion membrane anchored format. All described NDV vector vaccines grow to high titers in embryonated chicken eggs. In a proof of principle mouse study, we report that the NDV vector vaccines elicit high levels of antibodies that are neutralizing when the vaccine is given intramuscularly. Importantly, these COVID-19 vaccine candidates protect mice from a mouse-adapted SARS-CoV-2 challenge with no detectable viral titer and viral antigen in the lungs. RESEARCH IN CONTEXT: Evidence before this study: The spike (S) protein of the SARS-CoV-2 is the major antigen that notably induces neutralizing antibodies to block viral entry. Many COVID-19 vaccines are under development, among them viral vectors expressing the S protein of SARS-CoV-2 exhibit many benefits. Viral vector vaccines have the potential of being used as both live or inactivated vaccines and they can induce Th1 and Th2-based immune responses following different immunization regimens. Additionally, viral vector vaccines can be handled under BSL-2 conditions and they grow to high titers in cell cultures or other species restricted-hosts. For a SARS-CoV-2 vaccine, several viral vectors are being tested, such as adenovirus, measles virus and Modified vaccinia Ankara.Added value of this study: The NDV vector vaccine against SARS-CoV-2 described in this study has advantages similar to those of other viral vector vaccines. But the NDV vector can be amplified in embryonated chicken eggs, which allows for high yields and low costs per dose. Also, the NDV vector is not a human pathogen, therefore the delivery of the foreign antigen would not be compromised by any pre-existing immunity in humans. Finally, NDV has a very good safety record in humans, as it has been used in many oncolytic virus trials. This study provides an important option for a cost-effective SARS-CoV-2 vaccine.Implications of all the available evidence: This study informs of the value of a viral vector vaccine against SARS-CoV-2. Specifically, for this NDV based SARS-CoV-2 vaccine, the existing egg-based influenza virus vaccine manufactures in the U.S. and worldwide would have the capacity to rapidly produce hundreds of millions of doses to mitigate the consequences of the ongoing COVID-19 pandemic.

10.
EBioMedicine ; 62: 103132, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33232870

RESUMO

BACKGROUND: Due to the lack of protective immunity of humans towards the newly emerged SARS-CoV-2, this virus has caused a massive pandemic across the world resulting in hundreds of thousands of deaths. Thus, a vaccine is urgently needed to contain the spread of the virus. METHODS: Here, we describe Newcastle disease virus (NDV) vector vaccines expressing the spike protein of SARS-CoV-2 in its wild type format or a membrane-anchored format lacking the polybasic cleavage site. All described NDV vector vaccines grow to high titers in embryonated chicken eggs. In a proof of principle mouse study, the immunogenicity and protective efficacy of these NDV-based vaccines were investigated. FINDINGS: We report that the NDV vector vaccines elicit high levels of antibodies that are neutralizing when the vaccine is given intramuscularly in mice. Importantly, these COVID-19 vaccine candidates protect mice from a mouse-adapted SARS-CoV-2 challenge with no detectable viral titer and viral antigen in the lungs. INTERPRETATION: The results suggested that the NDV vector expressing either the wild type S or membrane-anchored S without the polybasic cleavage site could be used as live vector vaccine against SARS-CoV-2. FUNDING: This work is supported by an NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS) contract, the Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract, philanthropic donations and NIH grants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Regulação Viral da Expressão Gênica/imunologia , Vírus da Doença de Newcastle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Vivas não Atenuadas/genética , Vacinas Vivas não Atenuadas/imunologia , Células Vero
11.
bioRxiv ; 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32766572

RESUMO

A successful SARS-CoV-2 vaccine must be not only safe and protective but must also meet the demand on a global scale at low cost. Using the current influenza virus vaccine production capacity to manufacture an egg-based inactivated Newcastle disease virus (NDV)/SARS-CoV-2 vaccine would meet that challenge. Here, we report pre-clinical evaluations of an inactivated NDV chimera stably expressing the membrane-anchored form of the spike (NDV-S) as a potent COVID-19 vaccine in mice and hamsters. The inactivated NDV-S vaccine was immunogenic, inducing strong binding and/or neutralizing antibodies in both animal models. More importantly, the inactivated NDV-S vaccine protected animals from SARS-CoV-2 infections or significantly attenuated SARS-CoV-2 induced disease. In the presence of an adjuvant, antigen-sparing could be achieved, which would further reduce the cost while maintaining the protective efficacy of the vaccine.

12.
Vaccines (Basel) ; 8(4)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348607

RESUMO

A successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine must not only be safe and protective, but must also meet the demand on a global scale at a low cost. Using the current influenza virus vaccine production capacity to manufacture an egg-based inactivated Newcastle disease virus (NDV)/SARS-CoV-2 vaccine would meet that challenge. Here, we report pre-clinical evaluations of an inactivated NDV chimera stably expressing the membrane-anchored form of the spike (NDV-S) as a potent coronavirus disease 2019 (COVID-19) vaccine in mice and hamsters. The inactivated NDV-S vaccine was immunogenic, inducing strong binding and/or neutralizing antibodies in both animal models. More importantly, the inactivated NDV-S vaccine protected animals from SARS-CoV-2 infections. In the presence of an adjuvant, antigen-sparing could be achieved, which would further reduce the cost while maintaining the protective efficacy of the vaccine.

13.
Sci Rep ; 9(1): 600, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679709

RESUMO

This paper focuses on the nucleoprotein (NP) of the newly identified member of the Orthomyxoviridae family, Influenza D virus. To date several X-ray structures of NP of Influenza A (A/NP) and B (B/NP) viruses and of infectious salmon anemia (ISA/NP) virus have been solved. Here we purified, characterized and solved the X-ray structure of the tetrameric D/NP at 2.4 Å resolution. The crystal structure of its core is similar to NP of other Influenza viruses. However, unlike A/NP and B/NP which possess a flexible amino-terminal tail containing nuclear localization signals (NLS) for their nuclear import, D/NP possesses a carboxy-terminal tail (D/NPTAIL). We show that D/NPTAIL harbors a bipartite NLS and designed C-terminal truncated mutants to demonstrate the role of D/NPTAIL for nuclear transport.


Assuntos
Núcleo Celular/metabolismo , Nucleoproteínas/química , Orthomyxoviridae/metabolismo , Thogotovirus/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Cristalografia por Raios X , Células HEK293 , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , alfa Carioferinas/metabolismo
14.
Viruses ; 11(6)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195597

RESUMO

Influenza D virus (IDV) has first been identified in 2011 in the USA and was shown to mainly circulate in cattle. While IDV is associated with mild respiratory signs, its prevalence is still unknown. In the present study we show that IDV has been circulating throughout France in cattle and small ruminants, with 47.2% and 1.5% seropositivity, respectively. The high prevalence and moderate pathogenicity of IDV in cattle suggest that it may play an initiating role in the bovine respiratory disease complex.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Orthomyxoviridae/veterinária , Thogotovirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Doenças dos Bovinos/epidemiologia , França , Infecções por Orthomyxoviridae/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/veterinária , Infecções Respiratórias/virologia , Ruminantes , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA