Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 13(1): 11788, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479707

RESUMO

Cardiac Purkinje networks are a fundamental part of the conduction system and are known to initiate a variety of cardiac arrhythmias. However, patient-specific modeling of Purkinje networks remains a challenge due to their high morphological complexity. This work presents a novel method based on optimization principles for the generation of Purkinje networks that combines geometric and activation accuracy in branch size, bifurcation angles, and Purkinje-ventricular-junction activation times. Three biventricular meshes with increasing levels of complexity are used to evaluate the performance of our approach. Purkinje-tissue coupled monodomain simulations are executed to evaluate the generated networks in a realistic scenario using the most recent Purkinje/ventricular human cellular models and physiological values for the Purkinje-ventricular-junction characteristic delay. The results demonstrate that the new method can generate patient-specific Purkinje networks with controlled morphological metrics and specified local activation times at the Purkinje-ventricular junctions.


Assuntos
Benchmarking , Coração , Humanos , Doença do Sistema de Condução Cardíaco , Sistema de Condução Cardíaco , Ventrículos do Coração
2.
Front Genet ; 13: 855718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419039

RESUMO

The Neotropical region bears the most diverse freshwater fish fauna on the planet and is the stage for dramatic conservation struggles. Initiatives aiming for conservation of a single emblematic fish, a flagship species, to which different onlookers relate on a cultural/personal level, holds promise towards engagement and conservation actions benefiting whole biological communities and ecosystems. Here, we present the first comprehensive genomic resources for Salminus brasiliensis, a potential flagship Neotropical species. This fish faces pressing conservation issues, as well as taxonomic uncertainty, being a main species relevant to angling and commercial fisheries. We make available 178 million Illumina paired-end reads, 90 bases long, comprising 16 Gb (≈15X coverage) of filtered data, obtained from a primary genomic library of 500-bp fragments. We present the first de novo genomic assembly for S. brasiliensis, with ∼1 Gb (N 50 = 10,889), as well as the coding genome annotation of 12,962 putative genes from assembled genomic fragments over 10 kb, most of which could be identified from the Ostariophysi GenBank database. We also provide a genome-wide panel for more than 80,000 predicted microsatellite loci for low-cost, fast and abundant DNA marker development for this species. A total of 47, among 52 candidates, empirically assayed microsatellites were confirmed as polymorphic in this fish. All genomic data produced for S. brasiliensis is hereby made publicly accessible. With the disclosure of these results, we intend to foster general biology studies and to provide tools to be applied immediately in conservation and aquaculture in this candidate flagship Neotropical species.

3.
J Comput Sci ; 61: 101660, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35432632

RESUMO

Late in 2019, China identified a new type of coronavirus, SARS-CoV-2, and due to its fast spread, the World Health Organisation (WHO) declared a pandemic named COVID-19. Some variants of this virus were detected, including the Delta, which caused new waves of infections. This work uses an extended version of a SIRD model that includes vaccination effects to measure the impact of the Delta variant in three countries: Germany, Israel and Brazil. The calibrated models were able to reproduce the dynamics of the above countries. In addition, hypothetical scenarios were simulated to quantify the impact of vaccination and mitigation policies during the Delta wave. The results showed that the model could reproduce the complex dynamics observed in the different countries. The estimated increase of transmission rate due to the Delta variant was highest in Israel (7.9), followed by Germany (2.7) and Brazil (1.5). These values may support the hypothesis that people immunised against COVID-19 may lose their defensive antibodies with time since Israel, Germany, and Brazil fully vaccinated half of the population in March, July, and October. The scenario to study the impact of vaccination revealed relative reductions in the total number of deaths between 30% and 250%; an absolute reduction of 300 thousand deaths in Brazil due to vaccination during the Delta wave. The second hypothetical scenario revealed that mitigation policies saved up to 300 thousand Brazilians; relative reductions in the total number of deaths between 24% and 120% in the three analysed countries. Therefore, the results suggest that both vaccination and mitigation policies were crucial in decreasing the spread and the number of deaths during the Delta wave.

4.
Front Public Health ; 9: 623521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796495

RESUMO

Over the last months, mathematical models have been extensively used to help control the COVID-19 pandemic worldwide. Although extremely useful in many tasks, most models have performed poorly in forecasting the pandemic peaks. We investigate this common pitfall by forecasting four countries' pandemic peak: Austria, Germany, Italy, and South Korea. Far from the peaks, our models can forecast the pandemic dynamics 20 days ahead. Nevertheless, when calibrating our models close to the day of the pandemic peak, all forecasts fail. Uncertainty quantification and sensitivity analysis revealed the main obstacle: the misestimation of the transmission rate. Inverse uncertainty quantification has shown that significant changes in transmission rate commonly precede a peak. These changes are a key factor in forecasting the pandemic peak. Long forecasts of the pandemic peak are therefore undermined by the lack of models that can forecast changes in the transmission rate, i.e., how a particular society behaves, changes of mitigation policies, or how society chooses to respond to them. In addition, our studies revealed that even short forecasts of the pandemic peak are challenging. Backward projections have shown us that the correct estimation of any temporal change in the transmission rate is only possible many days ahead. Our results suggest that the distance between a change in the transmission rate and its correct identification in the curve of active infected cases can be as long as 15 days. This is intrinsic to the phenomenon and how it affects epidemic data: a new case is usually only reported after an incubation period followed by a delay associated with the test. In summary, our results suggest the phenomenon itself challenges the task of forecasting the peak of the COVID-19 pandemic when only epidemic data is available. Nevertheless, we show that exciting results can be obtained when using the same models to project different scenarios of reduced transmission rates. Therefore, our results highlight that mathematical modeling can help control COVID-19 pandemic by backward projections that characterize the phenomena' essential features and forward projections when different scenarios and strategies can be tested and used for decision-making.


Assuntos
COVID-19/epidemiologia , Previsões , Modelos Teóricos , Áustria/epidemiologia , COVID-19/transmissão , Alemanha/epidemiologia , Humanos , Itália/epidemiologia , Pandemias , República da Coreia/epidemiologia
6.
Sci Rep ; 8(1): 16392, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401912

RESUMO

Ectopic beats are known to be involved in the initiation of a variety of cardiac arrhythmias. Although their location may vary, ectopic excitations have been found to originate from infarct areas, regions of micro-fibrosis and other heterogeneous tissues. However, the underlying mechanisms that link ectopic foci to heterogeneous tissues have yet to be fully understood. In this work, we investigate the mechanism of micro-reentry that leads to the generation of ectopic beats near infarct areas using a patient-specific heart model. The patient-specific geometrical model of the heart, including scar and peri-infarct zones, is obtained through magnetic resonance imaging (MRI). The infarct region is composed of ischemic myocytes and non-conducting cells (fibrosis, for instance). Electrophysiology is captured using an established cardiac myocyte model of the human ventricle modified to describe ischemia. The simulation results clearly reveal that ectopic beats emerge from micro-reentries that are sustained by the heterogeneous structure of the infarct regions. Because microscopic information about the heterogeneous structure of the infarct regions is not available, Monte-Carlo simulations are used to identify the probabilities of an infarct region to behave as an ectopic focus for different levels of ischemia and different percentages of non-conducting cells. From the proposed model, it is observed that ectopic beats are generated when a percentage of non-conducting cells is near a topological metric known as the percolation threshold. Although the mechanism for micro-reentries was proposed half a century ago to be a source of ectopic beats or premature ventricular contractions during myocardial infarction, the present study is the first to reproduce this mechanism in-silico using patient-specific data.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Modelagem Computacional Específica para o Paciente , Potenciais de Ação , Estudos de Viabilidade , Ventrículos do Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Método de Monte Carlo , Infarto do Miocárdio/diagnóstico por imagem
7.
Sci Rep ; 8(1): 8511, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855493

RESUMO

A broad panel of tens of thousands of microsatellite loci is unveiled for an endangered piracema (i.e. migratory) South American fish, Brycon orbignyanus. Once one of the main fisheries resources in the Platine Basin, it is now almost extinct in nature and focus of intense aquaculture activity. A total of 178.2 million paired-end reads (90 bases long) were obtained through the use of sequencing-by-synthesis (from a primary genomic library of 500 bp DNA fragments) and is made available through NCBI's Sequence Read Archive, SRA accession SRX3350440. Short reads were assembled de novo and screening for perfect microsatellite motifs revealed more than 81 thousands unique microsatellite loci, for which primer pairs were proposed. A total of 29 polymorphic microsatellite markers were already previously validated for this panel. A partial genomic assembly is hereby presented and these genomic resources are publicly made available. These data will foster the rapid development of hundreds of new DNA markers for genetic diversity studies, conservation initiatives and management practices for this important and depleted species. The availability of such preliminary genomic data will also be of use in the areas of bioinformatics, ecology, genetics and evolution.


Assuntos
Caraciformes/genética , Espécies em Perigo de Extinção , Repetições de Microssatélites , Animais , DNA/genética , Biblioteca Gênica , Marcadores Genéticos/genética , Genômica
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 2293-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25469815

RESUMO

The first complete mitochondrial genome for the Anostomidae fish family has been announced. Piracema fishes are the potamodromous migratory species from South America, which undergo lengthy and dramatic yearly reproductive upstream runs. The piracema species Leporinus piavussu has recently been described after a long misidentification history. Its mitogenome, assembled using NGS data and Sanger sequencing, consists in a 16,682 bp circular molecule (GenBank accession number KM886569). The exact sequence and position of 37 mitochondrial genes and the control region is established. A possible case of heteroplasmy was found with NGS and corroborated by Sanger sequencing. These results will positively contribute to the debate about this group's taxonomy, evolution and conservation.


Assuntos
Caraciformes/genética , Genoma Mitocondrial , Animais , Códon , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA