Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 671: 115135, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019253

RESUMO

Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 µmol L-1 (r = 0.999), detection limit of 0.27 µmol L-1 for 7-mGua; from 3.00 to 25.00 µmol L-1 (r = 0.998), with a detection limit of 1.69 µmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.


Assuntos
5-Metilcitosina , Boro , Humanos , Oxirredução , Eletrodos , Guanina
2.
Bioelectrochemistry ; 80(2): 175-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21111689

RESUMO

Clioquinol is an antifungal, antiprotozoal and an Alzheimer's disease drug with cytotoxic activity toward human cancer cells. The electrochemical behavior of clioquinol and its oxidation product was studied using cyclic, differential pulse and square-wave voltammetry over a wide pH range on a glassy carbon electrode. The results revealed that the oxidation of clioquinol is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism and results in the formation of a main oxidation product, which adsorbs very strongly on the glassy carbon surface. The charge transfer coefficient was calculated as 0.64. The adsorbed oxidation product presented reversible redox behavior, with two electron and two proton transfer. The electrochemical oxidation of clioquinol as a phenolic compound involves the formation of a phenoxy radical which reacts in at least two ways: in one pathway the radical initiates polymerization, the products remaining at the electrode surface, and in the other the radical is oxidized to a quinone-like structure. A mechanism for the oxidation of clioquinol is proposed.


Assuntos
Anti-Infecciosos , Carbono , Clioquinol , Vidro , Adsorção , Anti-Infecciosos/análise , Anti-Infecciosos/química , Carbono/química , Clioquinol/análise , Clioquinol/química , Eletroquímica , Eletrodos , Vidro/química , Humanos , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA