Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26540209

RESUMO

The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (<30%). As a final remark, the results obtained in this study indicate that P. simplicissimum, a non-ligninolytic fungi characteristic of cork itself, could be used as an efficient degrader of PAH-contaminated cork.


Assuntos
Antracenos/análise , Antracenos/metabolismo , Aspergillus niger/metabolismo , Mucor/metabolismo , Penicillium/metabolismo , Phanerochaete/metabolismo , Pleurotus/metabolismo , Biodegradação Ambiental , Substâncias Perigosas/análise , Substâncias Perigosas/metabolismo , Quercus , Espanha
2.
Artigo em Inglês | MEDLINE | ID: mdl-21644164

RESUMO

The aim of this study is to determine the sorption-desorption behavior of a mixture of thirteen aqueous PAHs on cork waste at a particle of size 0.25-0.42 mm obtained from the remains of cork strips. The final purpose is to use this natural adsorbent as an alternative to activated carbon in an innovative approach for the removal of this class of toxic compounds, and significantly reduce the regeneration costs of the process. The chemical composition of the selected cork revealed that suberin (38.5 %) and lignin (31.6 %) were the main structural components of the cell wall. The high efficiency of cork as a biosorbent of PAHs is shown by the fact that just over 80 % of adsorption occurred during the first two minutes of contact time. Both Freundlich's and Langmuir's isotherms gave good fits to the sorption process. The highest adsorption affinities were exhibited for pyrene, anthracene, and phenanthrene. Desorption studies indicate a high degree of irreversibility for all PAHs, and especially so in the case of high molecular PAHs. The correlation with K(F) and low molecular weight PAHs was the most significant. The quantity of cork required to reduce water pollution was estimated to be between 3 and 15 times less than the quantities required in the case of other materials (i.e. aspen wood and leonardite). This study demonstrates for the first time that cork is a potential biosorbent for PAHs and may have relevance in the future treatment of PAH-contaminated waters.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/química , Quercus/química , Poluentes Químicos da Água/química , Adsorção , Cromatografia Gasosa-Espectrometria de Massas , Lignina/química , Lipídeos/química , Microextração em Fase Sólida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA