Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Evol Biol ; 15: 20, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25886182

RESUMO

BACKGROUND: Variation in the number of repeated traits, or serial homologs, has contributed greatly to animal body plan diversity. Eyespot color patterns of nymphalid butterflies, like arthropod and vertebrate limbs, are an example of serial homologs. These eyespot color patterns originated in a small number of wing sectors on the ventral hindwing surface and later appeared in novel wing sectors, novel wings, and novel wing surfaces. However, the details of how eyespots were co-opted to these novel wing locations are currently unknown. RESULTS: We used a large data matrix of eyespot/presence absence data, previously assembled from photographs of contemporary species, to perform a phylogenetic investigation of eyespot origins in nine independent nymphalid lineages. To determine how the eyespot gene regulatory network acquired novel positional information, we used phylogenetic correlation analyses to test for non-independence in the origination of eyespots. We found consistent patterns of eyespot gene network redeployment in the nine lineages, where eyespots first redeployed from the ventral hindwing to the ventral forewing, then to new sectors within the ventral wing surface, and finally to the dorsal wing surface. Eyespots that appeared in novel wing sectors modified the positional information of their serial homolog ancestors in one of two ways: by changing the wing or surface identity while retaining sector identity, or by changing the sector identity while retaining wing and surface identity. CONCLUSIONS: Eyespot redeployment to novel sectors, wings, and surfaces happened multiple times in different nymphalid subfamilies following a similar pattern. This indicates that parallel mutations altering expression of the eyespot gene regulatory network led to its co-option to novel wing locations over time.


Assuntos
Borboletas/anatomia & histologia , Borboletas/genética , Redes Reguladoras de Genes , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Borboletas/classificação , Mutação , Filogenia , Pigmentação
2.
PLoS Genet ; 8(8): e1002893, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916033

RESUMO

Understanding how novel complex traits originate involves investigating the time of origin of the trait, as well as the origin of its underlying gene regulatory network in a broad comparative phylogenetic framework. The eyespot of nymphalid butterflies has served as an example of a novel complex trait, as multiple genes are expressed during eyespot development. Yet the origins of eyespots remain unknown. Using a dataset of more than 400 images of butterflies with a known phylogeny and gene expression data for five eyespot-associated genes from over twenty species, we tested origin hypotheses for both eyespots and eyespot-associated genes. We show that eyespots evolved once within the family Nymphalidae, approximately 90 million years ago, concurrent with expression of at least three genes associated with early eyespot development. We also show multiple losses of expression of most genes from this early three-gene cluster, without corresponding losses of eyespots. We propose that complex traits, such as eyespots, may have originated via co-option of a large pre-existing complex gene regulatory network that was subsequently streamlined of genes not required to fulfill its novel developmental function.


Assuntos
Borboletas/genética , Expressão Gênica , Pigmentação/genética , Asas de Animais/metabolismo , Animais , Evolução Biológica , Feminino , Redes Reguladoras de Genes , Estudos de Associação Genética , Genótipo , Masculino , Família Multigênica , Fenótipo , Filogenia , Asas de Animais/anatomia & histologia
3.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24870037

RESUMO

Serial homologues are repeated traits that share similar development but occur in different parts of the body. Variation in number of repeats accounts for substantial diversity in animal form and considerable work has focused on identifying the factors accounting for this variation. Little is known, however, about how serial homologues originally become repeated, or about the relative timing of repeat individuation relative to repeat origin. Here, we show that the serially repeated eyespots on nymphalid butterfly wings most likely arose as a small cluster of units on the ventral hindwing that were later co-opted to the dorsal and anterior wing surfaces. Based on comparative analyses of over 400 species, we found support for a model of eyespot origin followed by redeployment, rather than by the conventional model, where eyespots arose as a complete row of undifferentiated units that later gained individuation. In addition, eyespots most likely evolved from simpler pattern elements, single-coloured spots, which were already individuated among different wing sectors. Finally, the late appearance of eyespots on the dorsal, hidden wing surface further suggests that these novel complex traits originally evolved for one function (thwarting predator attacks) and acquired a second function (sexual signalling) when moved to a different body location. This broad comparative analysis illustrates how serial homologues may initially evolve as a few units serving a particular function and subsequently become repeated in novel body locations with new functions.


Assuntos
Evolução Biológica , Borboletas/genética , Expressão Gênica , Pigmentação , Asas de Animais/fisiologia , Animais , Modelos Biológicos , Fenótipo
4.
Mol Phylogenet Evol ; 79: 132-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24747130

RESUMO

The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.


Assuntos
Ascomicetos/classificação , Filogenia , Ascomicetos/genética , Núcleo Celular/genética , Genes Fúngicos , Genes Mitocondriais , Funções Verossimilhança , Modelos Genéticos , RNA Ribossômico/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Software
5.
J Exp Zool B Mol Dev Evol ; 320(5): 321-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23633220

RESUMO

Butterfly eyespots represent novel complex traits that display substantial diversity in number and size within and across species. Correlative gene expression studies have implicated a large suite of transcription factors, including Distal-less (Dll), Engrailed (En), and Spalt (Sal), in eyespot development in butterflies, but direct evidence testing the function of any of these proteins is still missing. Here we show that the characteristic two-eyespot pattern of wildtype Bicyclus anynana forewings is correlated with dynamic progression of Dll, En, and Sal expression in larval wings from four spots to two spots, whereas no such decline in gene expression ensues in a four-eyespot mutant. We then conduct transgenic experiments testing whether over-expression of any of these genes in a wild-type genetic background is sufficient to induce eyespot differentiation in these pre-patterned wing compartments. We also produce a Dll-RNAi transgenic line to test how Dll down-regulation affects eyespot development. Finally we test how ectopic expression of these genes during the pupal stages of development alters adults color patters. We show that over-expressing Dll in larvae is sufficient to induce the differentiation of additional eyespots and increase the size of eyespots, whereas down-regulating Dll leads to a decrease in eyespot size. Furthermore, ectopic expression of Dll in the early pupal wing led to the appearance of ectopic patches of black scales. We conclude that Dll is a positive regulator of focal differentiation and eyespot signaling and that this gene is also a possible selector gene for scale melanization in butterflies.


Assuntos
Evolução Biológica , Morfogênese/genética , Pigmentação/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Borboletas/genética , Borboletas/crescimento & desenvolvimento , Cor , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Larva/genética , Larva/crescimento & desenvolvimento , Transdução de Sinais/genética , Fatores de Transcrição/genética , Asas de Animais/metabolismo
6.
Syst Biol ; 60(4): 519-27, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21436104

RESUMO

The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearance of a lineage toward the recent causing most objective calibration selection approaches to erroneously exclude appropriate calibrations or to incorporate multiple calibrations that are too young to accurately represent the divergence times of target lineages. Using turtles as a case study, we develop a Bayesian extension to the fossil selection approach developed by Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibrations points. Am. Nat. 171:726-742) that takes into account this taphonomic bias. Our method has the advantage of identifying calibrations that may bias age estimates to be too recent while incorporating uncertainty in phylogenetic parameter estimates such as tree topology and branch lengths. Additionally, this method is easily adapted to assess the consistency of potential calibrations to any one calibration in the candidate pool.


Assuntos
Fósseis , Filogenia , Tartarugas/genética , Animais , Especiação Genética , Preservação Biológica , Tartarugas/anatomia & histologia , Tartarugas/classificação
7.
Insects ; 13(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36292813

RESUMO

Urban areas are proliferating quickly around the globe often with detrimental impacts on biodiversity. Insects, especially pollinators, have also seen record declines in recent decades, sometimes associated with land use change such as urbanization, but also associated with climate changes such as increased aridity. How these various factors play out in attracting and sustaining species richness in a complex urban matrix is poorly understood. Urban botanical gardens may serve as important refugia for insect pollinators in arid regions due to reliable water availability for both plants and insects. Here, we use community science data on butterfly observations to evaluate if botanical gardens can be hotspots of biodiversity in the arid urban landscapes of the southwest US. We found butterfly richness and diversity were proportionally overrepresented in botanical gardens compared with the urban landscape they were embedded in. We conclude that biodiversity-friendly botanical gardens in urban arid regions can make a valuable contribution to pollinator conservation, in particular, in face of the continued aridification due to climate change.

8.
Proc Biol Sci ; 278(1714): 1981-8, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21123259

RESUMO

The processes governing the evolution of sexual dimorphism provided a foundation for sexual selection theory. Two alternative processes, originally proposed by Darwin and Wallace, differ primarily in the timing of events creating the dimorphism. In the process advocated by Darwin, a novel ornament arises in a single sex, with no temporal separation in the origin and sex-limitation of the novel trait. By contrast, Wallace proposed a process where novel ornaments appear simultaneously in both sexes, but are then converted into sex-limited expression by natural selection acting against showy coloration in one sex. Here, we investigate these alternative modes of sexual dimorphism evolution in a phylogenetic framework and demonstrate that both processes contribute to dimorphic wing patterns in the butterfly genera Bicyclus and Junonia. In some lineages, eyespots and bands arise in a single sex, whereas in other lineages they appear in both sexes but are then lost in one of the sexes. In addition, lineages displaying sexual dimorphism were more likely to become sexually monomorphic than they were to remain dimorphic. This derived monomorphism was either owing to a loss of the ornament ('drab monomorphism') or owing to a gain of the same ornament by the opposite sex ('mutual ornamentation'). Our results demonstrate the necessity of a plurality in theories explaining the evolution of sexual dimorphism within and across taxa. The origins and evolutionary fate of sexual dimorphism are probably influenced by underlying genetic architecture responsible for sex-limited expression and the degree of intralocus sexual conflict. Future comparative and developmental work on sexual dimorphism within and among taxa will provide a better understanding of the biases and constraints governing the evolution of animal sexual dimorphism.


Assuntos
Evolução Biológica , Borboletas/genética , Caracteres Sexuais , Animais , Borboletas/fisiologia , Feminino , Masculino , Preferência de Acasalamento Animal , Fenótipo , Seleção Genética , Asas de Animais/anatomia & histologia
9.
J Insect Sci ; 11: 66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21867433

RESUMO

Members of the diverse butterfly families Nymphalidae (brush-footed butterflies) and Riodinidae (metalmarks) have reduced first thoracic limbs and only use two pairs of legs for walking. In order to address questions about the detailed morphology and evolutionary origins of these reduced limbs, the three thoracic limbs of 13 species of butterflies representing all six butterfly families were examined and measured, and ancestral limb sizes were reconstructed for males and females separately. Differences in limb size across butterflies involve changes in limb segment size rather than number of limb segments. Reduction of the first limb in both nymphalids and riodinids appears particularly extensive in the femur, but the evolution of these reduced limbs is suggested to be a convergent evolutionary event. Possible developmental differences as well as ecological factors driving the evolution of reduced limbs are discussed.


Assuntos
Evolução Biológica , Borboletas/anatomia & histologia , Animais , Extremidades/anatomia & histologia , Feminino , Masculino
10.
PeerJ Comput Sci ; 7: e441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834108

RESUMO

The interdisciplinary field of data science, which applies techniques from computer science and statistics to address questions across domains, has enjoyed recent considerable growth and interest. This emergence also extends to undergraduate education, whereby a growing number of institutions now offer degree programs in data science. However, there is considerable variation in what the field actually entails and, by extension, differences in how undergraduate programs prepare students for data-intensive careers. We used two seminal frameworks for data science education to evaluate undergraduate data science programs at a subset of 4-year institutions in the United States; developing and applying a rubric, we assessed how well each program met the guidelines of each of the frameworks. Most programs scored high in statistics and computer science and low in domain-specific education, ethics, and areas of communication. Moreover, the academic unit administering the degree program significantly influenced the course-load distribution of computer science and statistics/mathematics courses. We conclude that current data science undergraduate programs provide solid grounding in computational and statistical approaches, yet may not deliver sufficient context in terms of domain knowledge and ethical considerations necessary for appropriate data science applications. Additional refinement of the expectations for undergraduate data science education is warranted.

11.
BMC Evol Biol ; 10: 239, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20682073

RESUMO

BACKGROUND: The processes governing the origin and maintenance of mimetic phenotypes can only be understood in a phylogenetic framework. Phylogenetic estimates of evolutionary relationships can provide a context for analyses of character evolution; however, when phylogenetic estimates conflict, rigorous analyses of alternative evolutionary histories are necessary to determine the likelihood of a specific history giving rise to the observed pattern of diversity. The polyphenic butterfly Limenitis arthemis provides a case in point. This species is comprised of three lineages, two of which are mimetic and one of which is non-mimetic. Conflicting estimates of the relationships among these three lineages requires direct evaluation of the alternative hypotheses of mimicry evolution. RESULTS: Using a coalescent framework, we found support for a sister-taxon relationship between the non-mimetic L. a. arthemis and the mimetic L. a. astyanax, congruent with the previous hypothesis that the non-mimetic form of L. a. arthemis was derived from a mimetic ancestor. We found no support for a mimetic clade (L. a. astyanax + L. a. arizonensis) despite analyzing numerous models of population structure. CONCLUSIONS: These results provide the foundation for future studies of mimicry, which should integrate phylogenetic and developmental analyses of wing pattern formation. We propose future analyses of character evolution accommodate conflicting phylogenetic estimates by explicitly testing alternative evolutionary hypotheses.


Assuntos
Evolução Biológica , Borboletas/genética , Filogenia , Asas de Animais , Animais , Simulação por Computador , Modelos Genéticos , Fenótipo
12.
Proc Natl Acad Sci U S A ; 104(49): 19381-6, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18029450

RESUMO

Aposematic coloration, or warning coloration, is a visual signal that acts to minimize contact between predator and unprofitable prey. The conditions favoring the evolution of aposematic coloration remain largely unidentified. Recent work suggests that diet specialization and resultant toxicity may play a role in facilitating the evolution and persistence of warning coloration. Using a phylogenetic approach, we investigated the evolution of larval warning coloration in the genus Papilio (Lepidoptera: Papilionidae). Our results indicate that there are at least four independent origins of aposematic larval coloration within Papilio. Controlling for phylogenetic relatedness among Papilio taxa, we found no evidence supporting the hypothesis that either diet specialization or chemical specialization facilitated the origin of aposematic larvae. However, there was a significant relationship between the signal environment and the evolution of aposematic larvae. Specifically, Papilio lineages feeding on herbaceous or narrow-leaved plants, regardless of the plants' taxonomic affiliation, were more likely to evolve aposematic larvae than were lineages feeding only on trees/shrubs or broad-leaved plants. These results demonstrate that factors other than diet specialization, such as the signal environment of predator-prey interactions, may play a large role in the initial evolution and persistence of aposematic coloration.


Assuntos
Ração Animal , Evolução Biológica , Lepidópteros/classificação , Lepidópteros/fisiologia , Pigmentação , Comportamento Predatório , Animais , Meio Ambiente , Filogenia
13.
Elife ; 92020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041684

RESUMO

Plasticity is often regarded as a derived adaptation to help organisms survive in variable but predictable environments, however, we currently lack a rigorous, mechanistic examination of how plasticity evolves in a large comparative framework. Here, we show that phenotypic plasticity in eyespot size in response to environmental temperature observed in Bicyclus anynana satyrid butterflies is a complex derived adaptation of this lineage. By reconstructing the evolution of known physiological and molecular components of eyespot size plasticity in a comparative framework, we showed that 20E titer plasticity in response to temperature is a pre-adaptation shared by all butterfly species examined, whereas expression of EcR in eyespot centers, and eyespot sensitivity to 20E, are both derived traits found only in a subset of species with eyespots.


A well-known family of butterflies have circular patterns on their wings that look like eyes. These eye-like markings help deflect predators away from the butterfly's body so they attack the outer edges of their wings. However, in certain seasons, such as the dry season in Africa, the best way for this family to survive is by not drawing any attention to their bodies. Thus, butterflies born during this season shrink the size of their eyespots so they can hide among the dry leaves. How this family of butterflies are able to change the size of these eye-like spots has only been studied in the species Bicyclus anynana. During development low temperatures, which signify the beginning of the dry season, reduce the amount of a hormone called 20E circulating in the blood of this species. This changes the behavior of hormone-sensitive cells in the eyespots making them smaller in size. But it remains unclear how B. anynana evolved this remarkable tactic and whether its relatives have similar abilities. Now, Bhardwaj et al. show that B. anynana is the only one of its relatives that can amend the size of its eyespots in response to temperature changes. In the experiments, 13 different species of butterflies, mostly from the family that has eyespots, were developed under two different temperatures. Low temperatures caused 20E hormone levels to decrease in all 13 species. However, most of these species did not develop smaller eyespots in response to this temperature change. This includes species that are known to have larger and smaller eyespots depending on the season. Like B. anynana, four of the species studied have receptors for the 20E hormone at the center of their eyespots. However, changing 20E hormone levels in these species did not reduce eyespot size. These results show that although temperature changes alter hormone levels in a number of species, only B. anynana have taken advantage of this mechanism to regulate eyespot size. In addition, Bhardwaj et al. found that this unique mechanism evolved from several genetic changes over millions of years. Other species likely use other environmental cues to trigger seasonal changes in the size of their eyespots.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Borboletas/genética , Animais , Borboletas/metabolismo , Ecdisterona/metabolismo , Feminino , Pigmentação/genética , Receptores de Esteroides/metabolismo , Estações do Ano , Temperatura
14.
Bioinformatics ; 24(24): 2932-3, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18953045

RESUMO

SUMMARY: AUGIST (accomodating uncertainty in genealogies while inferring species tress) is a new software package for inferring species trees while accommodating uncertainty in gene genealogies. It is written for the Mesquite software system and provides sampling procedures to incorporate uncertainty in gene tree reconstruction while providing confidence estimates for inferred species trees. AVAILABILITY: http://www.lycaenid.org/augist/


Assuntos
Filogenia , Software , Algoritmos , Animais , Evolução Molecular , Genes , Variação Genética , Humanos , Especificidade da Espécie , Incerteza
15.
Proc Biol Sci ; 276(1666): 2369-75, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19364741

RESUMO

Visual patterns in animals may serve different functions, such as attracting mates and deceiving predators. If a signal is used for multiple functions, the opportunity arises for conflict among the different functions, preventing optimization for any one visual signal. Here we investigate the hypothesis that spatial separation of different visual signal functions has occurred in Bicyclus butterflies. Using phylogenetic reconstructions of character evolution and comparisons of evolutionary rates, we found dorsal surface characters to evolve at higher rates than ventral characters. Dorsal characters also displayed sex-based differences in evolutionary rates more often than did ventral characters. Thus, dorsal characters corresponded to our predictions of mate signalling while ventral characters appear to play an important role in predator avoidance. Forewing characters also fit a model of mate signalling, and displayed higher rates of evolution than hindwing characters. Our results, as well as the behavioural and developmental data from previous studies of Bicyclus species, support the hypothesis that spatial separation of visual signal functions has occurred in Bicyclus butterflies. This study is the first to demonstrate, in a phylogenetic framework, that spatial separation of signals used for mate signalling and those used for predator avoidance is a viable strategy to accommodate multiple signal functions. This signalling strategy has important ramifications on the developmental evolution of wing pattern elements and diversification of butterfly species.


Assuntos
Borboletas/fisiologia , Preferência de Acasalamento Animal , Filogenia , Asas de Animais/anatomia & histologia , Comunicação Animal , Animais , Borboletas/anatomia & histologia , Cor , Feminino , Masculino , Caracteres Sexuais
16.
Commun Biol ; 2: 68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793046

RESUMO

Mimics should not exist without their models, yet often they do. In the system involving queen and viceroy butterflies, the viceroy is both mimic and co-model depending on the local abundance of the model, the queen. Here, we integrate population surveys, chemical analyses, and predator behavior assays to demonstrate how mimics may persist in locations with low-model abundance. As the queen becomes less locally abundant, the viceroy becomes more chemically defended and unpalatable to predators. However, the observed changes in viceroy chemical defense and palatability are not attributable to differing host plant chemical defense profiles. Our results suggest that mimetic viceroy populations are maintained at localities of low-model abundance through an increase in their toxicity. Sharing the burden of predator education in some places but not others may also lower the fitness cost of warning signals thereby supporting the origin and maintenance of aposematism.


Assuntos
Mimetismo Biológico/fisiologia , Borboletas/fisiologia , Modelos Biológicos , Comportamento Predatório/fisiologia , Animais , Borboletas/metabolismo , Florida , Geografia , Glicosídeos/metabolismo , Larva/química , Larva/fisiologia , Fenóis/metabolismo , Esteroides/metabolismo
17.
Insects ; 10(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514459

RESUMO

Agriculture has long been a part of the urban landscape, from gardens to small scale farms. In recent decades, interest in producing food in cities has grown dramatically, with an estimated 30% of the global urban population engaged in some form of food production. Identifying and managing the insect biodiversity found on city farms is a complex task often requiring years of study and specialization, especially in urban landscapes which have a complicated tapestry of fragmentation, diversity, pollution, and introduced species. Supporting urban growers with relevant data informs insect management decision-making for both growers and their neighbors, yet this information can be difficult to come by. In this study, we introduced several web-based citizen science programs that can connect growers with useful data products and people to help with the who, what, where, and when of urban insects. Combining the power of citizen science volunteers with the efforts of urban farmers can result in a clearer picture of the diversity and ecosystem services in play, limited insecticide use, and enhanced non-chemical alternatives. Connecting urban farming practices with citizen science programs also demonstrates the ecosystem value of urban agriculture and engages more citizens with the topics of food production, security, and justice in their communities.

18.
Proc Biol Sci ; 275(1639): 1125-32, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18285285

RESUMO

Batesian mimics gain protection from predation through the evolution of physical similarities to a model species that possesses anti-predator defences. This protection should not be effective in the absence of the model since the predator does not identify the mimic as potentially dangerous and both the model and the mimic are highly conspicuous. Thus, Batesian mimics should probably encounter strong predation pressure outside the geographical range of the model species. There are several documented examples of Batesian mimics occurring in locations without their models, but the evolutionary responses remain largely unidentified. A mimetic species has four alternative evolutionary responses to the loss of model presence. If predation is weak, it could maintain its mimetic signal. If predation is intense, it is widely presumed the mimic will go extinct. However, the mimic could also evolve a new colour pattern to mimic another model species or it could revert back to its ancestral, less conspicuous phenotype. We used molecular phylogenetic approaches to reconstruct and test the evolution of mimicry in the North American admiral butterflies (Limenitis: Nymphalidae). We confirmed that the more cryptic white-banded form is the ancestral phenotype of North American admiral butterflies. However, one species, Limenitis arthemis, evolved the black pipevine swallowtail mimetic form but later reverted to the white-banded more cryptic ancestral form. This character reversion is strongly correlated with the geographical absence of the model species and its host plant, but not the host plant distribution of L. arthemis. Our results support the prediction that a Batesian mimic does not persist in locations without its model, but it does not go extinct either. The mimic can revert back to its ancestral, less conspicuous form and persist.


Assuntos
Evolução Biológica , Borboletas/anatomia & histologia , Borboletas/fisiologia , Especiação Genética , Animais , Demografia , Modelos Biológicos , Filogenia , Plantas , Comportamento Predatório , Asas de Animais
19.
Insects ; 9(4)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563191

RESUMO

By 2030, ten percent of earth's landmass will be occupied by cities. Urban environments can be home to many plants and animals, but surveying and estimating biodiversity in these spaces is complicated by a heterogeneous built environment where access and landscaping are highly variable due to human activity. Citizen science approaches may be the best way to assess urban biodiversity, but little is known about their relative effectiveness and efficiency. Here, we compare three techniques for acquiring data on butterfly (Lepidoptera: Rhopalocera) species richness: trained volunteer Pollard walks, Malaise trapping with expert identification, and crowd-sourced iNaturalist observations. A total of 30 butterfly species were observed; 27 (90%) were recorded by Pollard walk observers, 18 (60%) were found in Malaise traps, and 22 (73%) were reported by iNaturalist observers. Pollard walks reported the highest butterfly species richness, followed by iNaturalist and then Malaise traps during the four-month time period. Pollard walks also had significantly higher species diversity than Malaise traps.

20.
F1000Res ; 7: 1391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613392

RESUMO

Genome graphs are emerging as an important novel approach to the analysis of high-throughput human sequencing data. By explicitly representing genetic variants and alternative haplotypes in a mappable data structure, they can enable the improved analysis of structurally variable and hyperpolymorphic regions of the genome. In most existing approaches, graphs are constructed from variant call sets derived from short-read sequencing. As long-read sequencing becomes more cost-effective and enables de novo assembly for increasing numbers of whole genomes, a method for the direct construction of a genome graph from sets of assembled human genomes would be desirable. Such assembly-based genome graphs would encompass the wide spectrum of genetic variation accessible to long-read-based de novo assembly, including large structural variants and divergent haplotypes. Here we present NovoGraph, a method for the construction of a human genome graph directly from a set of de novo assemblies. NovoGraph constructs a genome-wide multiple sequence alignment of all input contigs and creates a graph by merging the input sequences at positions that are both homologous and sequence-identical. NovoGraph outputs resulting graphs in VCF format that can be loaded into third-party genome graph toolkits. To demonstrate NovoGraph, we construct a genome graph with 23,478,835 variant sites and 30,582,795 variant alleles from de novo assemblies of seven ethnically diverse human genomes (AK1, CHM1, CHM13, HG003, HG004, HX1, NA19240). Initial evaluations show that mapping against the constructed graph reduces the average mismatch rate of reads from sample NA12878 by approximately 0.2%, albeit at a slightly increased rate of reads that remain unmapped.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos , Humanos , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA