RESUMO
Major histocompatibility complex class I (MHC-I) deficiency, also known as bare lymphocyte syndrome type 1 (BLS-1), is a rare autosomal recessively inherited immunodeficiency disorder with remarkable clinical and biological heterogeneity. Transporter associated with antigen processing (TAP) is a member of the ATP-binding cassette superfamily of transporters and consists of two subunits, TAP1 or TAP2. Any defect resulting from a mutation or deletion of these two subunits may adversely affect the peptide translocation in the endoplasmic reticulum, which is an important process for properly assembling MHC-I molecules. To date, only 12 TAP2-deficient patients were reported in the literature. Herein, we described two Iranian cases with 2 and 3 decades of delayed diagnosis of chronic necrotizing granulomatous skin lesions due to TAP2 deficiency without pulmonary involvement. Segregation analysis in family members identified 3 additional homozygous asymptomatic carriers. In both asymptomatic and symptomatic carriers, HLA-I expression was only 4-15% of the one observed in healthy controls. We performed the first deep immunophenotyping in TAP2-deficient patients. While total CD8 T cell counts were normal as previously reported, the patients showed strongly impaired naïve CD8 T cell counts. Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cell counts were increased.
Assuntos
Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Antígenos de Histocompatibilidade Classe I , Imunodeficiência Combinada Severa , Humanos , Apresentação de Antígeno/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Diagnóstico Tardio , Granuloma/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Irã (Geográfico) , Imunodeficiência Combinada Severa/genéticaRESUMO
Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
Assuntos
COVID-19/complicações , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças do Sistema Imunitário/complicações , Receptor 7 Toll-Like/deficiência , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Receptor 7 Toll-Like/genética , Adulto JovemRESUMO
Glycogen storage diseases (GSDs) are the heterogeneous group of disorders caused by mutations in at least 30 different genes. Different types of GSDs, especially liver GSDs, take overlapping symptoms and can be clinically indistinguishable. This survey evaluated the use of whole-exome sequencing (WES) for the genetic analysis of the liver GSD-suspected patients in three unrelated families. An in-house filtering pipeline was used to assess rare pathogenic variants in GSD-associated genes, autosomal recessive/mendelian disorder genes (carrier status for genetic counseling subjects), and the ACMG's list of 59 actionable genes. For the interpretation of the causative variants and the incidental/secondary findings, ACMG guidelines were applied. Additionally, we have explored PharmGKB class IA/IB pharmacogenetic variants. The segregation analysis was performed using Sanger sequencing for the novel causative variants. Bioinformatics analysis of the exome data in three individuals revealed three novel homozygous causative variants in the GSD-associated genes. The first variant, c.298_307delATGATCAACC in PYGL gene has related to HERS disease (GSD VI). Both variants of c.1043dupT and c.613-1G > C in SLC2A2 gene have been associated with Fanconi-Bickel syndrome (GSDXI). Eight pathogenic/likely pathogenic medical actionable findings in Mendelian disease genes and 10 pharmacogenetic variants with underlying drug response phenotypes have been identified. No known/expected pathogenic variants were detected in the ACMG's list of 59 actionable genes. The logical filtering steps can help in finding other medical actionable secondary/incidental findings as well as effectively identifying the causative variants in heterogeneous conditions such as GSDs. Three novel variants related to GSD genes recognized in liver GSD-suspected patients with early infantile and childhood-age onset.