Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 355(2): e2100237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862655

RESUMO

Novel heterocyclic derivatives (4-22) were designed, synthesized, and evaluated against hepatocellular carcinoma type (HepG2) and breast cancer (MCF-7) cells, targeting the VEGFR-2 enzyme. Compounds 18, 10, 13, 11, and 14 were found to be the most potent derivatives against both the HepG2 and MCF-7 cancer cell lines, with GI50 = 2.11, 2.54 µM, 3.16, 3.64 µM, 3.24, 6.99 µM, 7.41, 6.49 µM and 8.08, 10.46 µM, respectively. Compounds 18 and 10 showed higher activities against both HepG2 and MCF-7 cells than sorafenib (GI50 = 9.18, 5.47 µM, respectively) and doxorubicin (GI50 = 7.94, 8.07 µM, respectively). Compounds 13, 11, and 14 showed higher activities than sorafenib against HepG2 cancer cells, but lower activities against MCF-7 cells. Compounds 18, 13, and 10 were more potent than sorafenib, inhibiting vascular endothelial growth factor receptor-2 (VEGFR-2) at GI50 values of 0.05, 0.06, and 0.08 µM, respectively. Compound 11 inhibited VEGFR-2 at an IC50 value of 0.10 µM, which is equipotent to sorafenib. Compound 14 inhibited VEGFR-2 at an IC50 value of 0.11 µM, which is nearly equipotent to sorafenib. The tested compounds have more selectivity against cancer cell lines. Compounds 18, 10, 13, 11, and 14 are, respectively, 16.76, 9.24, 6.06, 2.78, and 2.85 times more toxic in HePpG2 cancer cells than in VERO normal cells. Also, compounds 18, 10, 13, 11, and 14 are, respectively, 14.07, 8.02, 2.81, 3.18, and 2.20 times more toxic in MCF-7 than in VERO normal cells. The most active compounds, 10, 13, and 18, showed a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos Heterocíclicos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Hepatocelular/tratamento farmacológico , Chlorocebus aethiops , Doxorrubicina/farmacologia , Feminino , Células Hep G2 , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/tratamento farmacológico , Células MCF-7 , Simulação de Acoplamento Molecular , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Células Vero
2.
Nanotechnology ; 32(33)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33971641

RESUMO

In this work, heterostructures of coupled TiO2@MoS2with different phases of MoS2were synthesized via hydrothermal technique. The prepared materials were thoroughly characterized using various techniques, including XRD, SEM, transmission electron microscopy, Brunauer-Emmet-Teller, XPS, Zeta potential and UV-vis spectroscopy. The optimized nanocomposites were tested for the photocatalytic degradation of methyl Orange (MO) under visible light as well as the adsorption of Rhodamine b (RhB) and methelene blue (MB) dyes. The TiO2@1T/2H-MoS2heterostructures exhibited a narrow bandgap compared to the other studied nanomaterials. A remarkable photodegradation efficiency of TiO2@1T/2H-MoS2was observed, which completely degraded 20 ppm of MO after 60 min with high stability over four successive cycles. This can be assigned to the formation of unique heterostructures with aligned energy bands between MoS2nanosheets and TiO2nanobelts. The formation of these novel interfaces promoted the electron transfer and increased the separation efficiency of carriers, resulting in high photocatalytic degradation. Furthermore, the adsorption efficiency of TiO2@1T/2H-MoS2was unique, 20 ppm solutions of RhB and MB were removed after 1 and 2 min, respectively. The superior adsorption performance of the TiO2@1T/2H-MoS2can be attributed to its high surface area (279.9 m2g-1) and the rich concentration of active sites. The kinetics and the isothermal analysis revealed that the TiO2@1T/2H MoS2heterstructures have maximum adsorption capacity of 1200 and 970 mg g-1for RhB and MB, respectively. This study provides a powerful way for designing an effective photocatalyst and adsorbent TiO2-based nanocomposites for water remediation.

3.
Arch Pharm (Weinheim) ; 354(8): e2100085, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33948983

RESUMO

Novel pyridine-derived compounds (5-19) were designed and synthesized, and their anticancer activities were evaluated against HepG2 and MCF-7 cells, targeting the VEGFR-2 enzyme. Compounds 10, 9, 8, and 15 were found to be the most potent derivatives against the two cancer cell lines, HepG2 and MCF-7, respectively, with IC50 = 4.25 and 6.08 µM, 4.68 and 11.06 µM, 4.34 and 10.29 µM, and 6.37 and 12.83 µM. Compound 10 displayed higher activity against HepG2 cells than sorafenib (IC50 = 9.18 and 5.47 µM, respectively) and doxorubicin (IC50 = 7.94 and 8.07 µM, respectively). It also showed higher activity than doxorubicin against MCF-7 cells, but lower activity than sorafenib. Compounds 9, 8, and 15 displayed higher activities than sorafenib and doxorubicin against HepG2 cells but exhibited lower activities against MCF-7 cells. Compound 10 potently inhibited VEGFR-2 at an IC50 value of 0.12 µM, which is nearly equipotent to sorafenib (IC50 = 0.10 µM). Compounds 8 and 9 exhibited very good activity with the same IC50 value of 0.13 µM. The six most potent derivatives, 6, 9, 8, 10, 15, and 18, were tested for their cytotoxicity against normal Vero cells. Compounds 6, 8, 9, 10, 15, and 18 are, respectively, 1.13, 3.74, 4.18, 3.64, 2.81, and 2.00 times more toxic to HepG2 and 2.06, 1.58, 1.76, 2.54, 1.40, and 2.69 times more toxic to MCF-7 breast cancer cells than in normal Vero cells.


Assuntos
Antineoplásicos/farmacologia , Piridinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Chlorocebus aethiops , Doxorrubicina/farmacologia , Desenho de Fármacos , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Simulação de Acoplamento Molecular , Piridinas/síntese química , Piridinas/química , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Células Vero
4.
Nanotechnology ; 31(47): 475602, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32615552

RESUMO

Molybdenum disulfide (MoS2) has recently been considered as an effective material for potential photocatalytic applications; however, its photocatalytic activity was limited due to the low density of active sites. In this work, MoS2 Quantum dots (QDs) were synthesized via the ultrasonication technique to construct heterostructure with SnS2 nanosheets (SnS2@MoS2 QDs) and the prepared materials were tested for photocatalytic applications for Methylene blue (MB). Pristine SnS2 and SnS2@MoS2 QDs nanocomposite were analyzed by XRD, TEM, PL, and Uv-Vis. Both SnS2 and SnS2@MoS2 QDs exhibited a single trigonal phase with the P-3m1 space group. The TEM analysis confirmed the coupling between the pristine SnS2 and SnS2@MoS2 QDs. The results of photocatalytic activity toward MB indicated that SnS2@MoS2 QDs material exhibits much superior photocatalytic performance compared to pristine SnS2. The excellent photodegradation performance of SnS2@MoS2 QDs is due in the main to the formation of heterojunction between SnS2 and MoS2 QDs with narrow bandgap formation, which results in a facile carriers transfer and thus high photocatalytic efficiency. A representative mechanism of the photodegradation for SnS2@MoS2 QDs photocatalyst was proposed. Such an ultrasonic technique is capable of producing small metallic particle size that can be used to construct new heterostructures for water remediation applications.

5.
ACS Appl Mater Interfaces ; 11(37): 33955-33965, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31449384

RESUMO

Supercapacitors have been the key target as energy storage devices for modern technology that need fast charging. Although supercapacitors have large power density, modifications should be done to manufacture electrodes with high energy density, longer stability, and simple device structure. The polymorph MoS2 has been one of the targeted materials for supercapacitor electrodes. However, it was hard to tune its phase and stability to achieve the maximum possible efficiency. Herein, we demonstrate the effect of the three main phases of MoS2 (the stable semiconductor 2H, the metastable semiconductor 3R, and the metastable metallic 1T) on the capacitance performance. The effect of the cation intercalation on the capacitance performance was also studied in Li2SO4, Na2SO4, and K2SO4 electrolytes. The performance of the electrode containing the metallic 1T outperforms those of the 2H and 3R phases in all electrolytes, with the order 1T > 3R > 2H. The 1T/2H phase showed a maximum performance in the K2SO4 electrolyte with a specific capacitance of 590 F g-1 at a scan rate of 5 mV s-1. MoS2 showed a good performance in both positive and negative potential windows allowing the fabrication of symmetric supercapacitor devices. The 1T MoS2 symmetric device showed a power density of 225 W/kg with an energy density of 4.19 Wh/kg. The capacitance retention was 82% after 1000 cycles, which is an outstanding performance for the metastable 1T-containing electrode.

6.
RSC Adv ; 9(49): 28345-28356, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529663

RESUMO

Herein, different phases of MoS2 nanosheets were synthesized, characterized and tested for dye removal from water. The influence of the MoS2 phases as well as the 1T concentration on the adsorption performance of organic dyes MO, RhB and MB was deeply investigated. The results revealed that the 1T-rich MoS2 nanosheets have superior adsorption performance compared to other 2H and 3R phases. The kinetic results of the adsorption process demonstrate that the experimental data followed the pseudo-second order equation. Meanwhile, the adsorption of dyes over the obtained materials was fitted with several isotherm models. The Langmuir model gives the best fitting to the experimental data with maximum a adsorption capacity of 787 mg g-1. The obtained capacity is significantly higher than that of all previous reports for similar MoS2 materials. Computational studies of the 2H and 1T/2H-MoS2 phases showed that the structural defects present at the 1T/2H grain boundaries enhance the binding of hydroxide and carboxyl groups to the MoS2 surface which in turn increase the adsorption properties of the 1T/2H-MoS2 phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA