RESUMO
To enhance the robustness and flexibility of biopharmaceutical manufacturing, a paradigm shift toward methods of continuous processing, such as perfusion, and fundamental technologies for high-throughput process development are being actively investigated. The continuous upstream process must establish an advanced control strategy to ensure a "State of Control" before operation. Specifically, feedforward and feedback control must address the complex fluctuations that occur during the culture process and maintain critical process parameters in appropriate states. However, control system design for industry-standard mammalian cell culture processes is still often performed in a laborious trial-and-error manner. This paper provides a novel control approach in which controller specifications to obtain desired control characteristics can be determined systematically by combining a culture model with control theory. In the proposed scheme, control conditions, such as PID parameters, can be specified mechanistically based on process understanding and control requirements without qualitative decision making or specific preliminary experiments. The effectiveness of the model-based control algorithm was verified by control simulations assuming perfusion Chinese hamster ovary culture. As a tool to assist in the development of control strategies, this study will reduce the high operational workload that is a serious problem in continuous culture and facilitate the digitalization of bioprocesses.
Assuntos
Produtos Biológicos , Cricetinae , Animais , Células CHO , Cricetulus , Técnicas de Cultura de Células , TecnologiaRESUMO
The fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.
Assuntos
Anticorpos Monoclonais , Cricetulus , Glucose , Animais , Glucose/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Cricetinae , Linhagem Celular , Meios de Cultura Livres de Soro , Metabolômica/métodos , Pulmão/metabolismo , Pulmão/citologia , Metaboloma , Imunoglobulina G/metabolismo , Células CHO , Técnicas de Cultura Celular por Lotes/métodos , Glutamina/metabolismoRESUMO
GRP94 (glucose-regulated protein 94) is a well-studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C-terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER-associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.
Assuntos
Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas de MembranaRESUMO
Chinese hamster ovary (CHO) cells are major host cells for biopharmaceuticals. During culture, the chromosome number of CHO cells alters spontaneously. Here, we investigated the effects of artificial changes in the chromosome number on productivity. When cell fusion between antibody-producing CHO-K1-derived cells was induced, we observed a wide range of aneuploidy that was not detected in controls. In particular, antibody productivities were high in clone-derived cell populations that retained a diverse chromosome number distribution. We also induced aneuploid cells using 3-aminobenzamide that causes chromosome non-disjunction. After induction of aneuploidy by 3-aminobenzamide, cells with an increased chromosome number were isolated, but cells with a decreased chromosome number could not be isolated. When antibody expression vectors were introduced into these isolated clones, productivity tended to increase in cells with an increased chromosome number. Further analysis was carried out by focusing on clone 5E8 with an average chromosome number of 37. When 5E8 cells were used as host, the productivity of multiple antibodies, including difficult-to-express antibodies, was improved compared with CHO-K1 cells. The copies of exogenous genes integrated into the genome were significantly increased in 5E8 cells. These findings expand the possibilities for host cell selection and contribute to the efficient construction of cell lines for recombinant protein production.
Assuntos
Aneuploidia , Anticorpos Monoclonais , Cricetinae , Animais , Cricetulus , Células CHO , Transfecção , Proteínas Recombinantes/genética , Cromossomos/químicaRESUMO
Cell-to-cell variability in cell populations arises from a combination of intrinsic factors and extrinsic factors related to the milieu. However, the heterogeneity of high cell density suspension cultures for therapeutic protein production remains unknown. Here, we illustrate the increasing heterogeneity in the cellular transcriptome of serum-free adapted CHO K1 cells during high cell density suspension culture over time without concomitant changes in the genomic sequence. Cell cycle-dependent subpopulations and cell clusters, which typically appear in other single-cell transcriptome analyses, were not found in these suspension cultures. Our results indicate that cell division changes the intracellular microenvironment and leads to cell cycle-dependent heterogeneity. Whole mitochondrial single-cell genome sequencing showed cell-to-cell mitochondrial genome variation and heteroplasmy within cells. The mitochondrial genome sequencing method developed here is potentially useful for the validation of cell clonality. The culture time-dependent increase in cellular heterogeneity observed in this study did not show any attenuation in this increasing heterogeneity. Future advances in bioengineering such as culture upscaling, prolonged culturing, and complex culture systems will be confronted with the need to assess and control cellular heterogeneity, and the method described here may prove useful for this purpose.
Assuntos
Técnicas de Cultura de Células , Divisão Celular , Perfilação da Expressão Gênica , Genoma Mitocondrial , Análise de Célula Única , Animais , Células CHO , CricetulusRESUMO
We herein report a novel mechanism of action of statin preparations using a new drug discovery method. Milk fat globule-EGF factor 8 protein (MFG-E8) was identified from the secretory component of mouse embryonic fibroblast (MEF) as a cell adhesion-promoting factor effective for screening active cellular agents of human induced pluripotent stem cells (hiPSCs) in vitro using electrochemical impedance. Our analyses showed that atorvastatin did not cause death in myocardial cells differentiated from hiPSCs but reduced the pluripotent cell survival in vitro when using serum- and albumin-free media, and inhibited the ability to form teratomas in mice. This result could have been already the cytopathic effect of atorvastatin, and complete elimination of hiPSCs was confirmed in the xenotransplantation assay. The administration of atorvastatin to hiPSCs caused the expression of hypoxia inducible factor (HIF)1α mRNA to be unchanged at 6 hr and downregulated at 24 hr. In addition, the inhibition of the survival of hiPSCs was confirmed by HIF1α-peroxisome proliferator-activated receptor (PPAR) axis inhibition. These results suggest that the addition of atorvastatin to hiPSC cultures reduces the survival of pluripotent cells by suppressing the HIF1α-PPAR axis. In summary, the HIF1α-PPAR axis has an important role in maintaining the survival of pluripotent hiPSCs.
Assuntos
Atorvastatina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos SCIDRESUMO
Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.
Assuntos
Produtos Biológicos/síntese química , Equipamentos Descartáveis , Contaminação de Medicamentos/prevenção & controle , Indústria Farmacêutica , Gestão de Riscos , Tecnologia Farmacêutica/instrumentação , Produtos Biológicos/efeitos adversos , Produtos Biológicos/normas , Produtos Biológicos/provisão & distribuição , Qualidade de Produtos para o Consumidor , Equipamentos Descartáveis/normas , Indústria Farmacêutica/normas , Humanos , Segurança do Paciente , Controle de Qualidade , Medição de Risco , Fatores de Risco , Gestão de Riscos/normas , Tecnologia Farmacêutica/normasRESUMO
Whole-virus (WV) vaccines from influenza A/duck/Hokkaido/77 (H3N2), and its reassortant strains H3N4, H3N5 and H3N7, which have the same haemagglutinin (HA) gene but different neuraminidase (NA) genes, were prepared from our influenza virus library. Mice were intranasally immunized with equivalent doses of each vaccine (1-0.01 µg per mouse). All of the mice that received the highest dose of each vaccine (1 µg per mouse) showed equivalent high HA-inhibiting (HI) antibody titres and survived the H3N2 challenge viruses. However, mice that received lower doses of vaccine (0.1 or 0.01 µg per mouse) containing a heterologous NA had lower survival rates than those given the H3N2-based vaccine. The lungs of mice challenged with H3N2 virus showed a significantly higher virus clearance rate when the vaccine contained the homologous NA (N2) versus a heterologous NA, suggesting that NA contributed to the protection, especially when the HI antibody level was low. These results suggested that, even if vaccines prepared for a possible upcoming pandemic do not induce sufficient HI antibodies, WV vaccines can still be effective through other matched proteins such as NA.
Assuntos
Genes Virais , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Neuraminidase/genética , Neuraminidase/imunologia , Animais , Anticorpos Antivirais/sangue , Feminino , Biblioteca Gênica , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/enzimologia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologiaRESUMO
OBJECTIVES: The purpose of this study was to evaluate and compare the osteoblastic differentiation ability of dedifferentiated fat (DFAT) cells and adipose stem cells (ASCs) from the buccal fat pad (BFP). MATERIALS AND METHODS: We isolated human DFAT cells and ASCs from the BFP of a patient who underwent oral and maxillofacial surgery and then analyzed their cell surface antigens by flow cytometry. Then, the cells were cultured in osteogenic medium for 14 days. Measurement of bone-specific alkaline phosphatase (BAP), osteocalcin (OCN), and calcium deposition and alizarin red staining were performed to evaluate the osteoblastic differentiation ability of both cell types. RESULTS: ASCs and DFAT cells were positive for CD90 and CD105 and negative for CD11b, CD34, and CD45. BAP (days 3 and 7), OCN (day 14), and calcium deposition (days 7 and 14) within DFAT cell cultures were significantly higher than those in ASC cultures. The alizarin red-stained area in DFAT cell cultures, which indicates mineralized matrix deposition, was stained more strongly than that in ASC cultures. CONCLUSIONS: The cell surface antigens of ASCs and DFAT cells tend to be similar. Furthermore, the osteoblastic differentiation ability of human DFAT cells is higher than that of ASCs from the BFP. CLINICAL RELEVANCE: Isolation of DFAT cells from the BFP has an esthetic advantage because the BFP can be obtained via the oral cavity without injury to the external body surface. Therefore, we consider that DFAT cells from the BFP are an ideal cell source for bone tissue engineering.
Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Mucosa Bucal/citologia , Osteoblastos/citologia , Células-Tronco/citologia , Citometria de Fluxo , HumanosRESUMO
Chinese hamster ovary (CHO) cells are the de facto standard host cells for biopharmaceuticals, and there is great interest in developing methods for constructing stable production cell lines. In this study, clones with a wide chromosome number distribution were selected from isolated antibody-producing strains, and subclones obtained from these clones were evaluated. The transgene copy number varied between the subclones. Even among subclones with similar copy numbers of antibody genes and maintained insertion sites, clones with different productivity were generated. Although the chromosome number distribution differed between these subclones, there was no correlation between the variability in chromosome number after cloning (genome instability) and productivity. Most of the subclones obtained from a parental strain with a wide chromosome number had the same wide chromosome number distribution as the parental strain. Less frequently, cells with less variation (remaining in one distribution) in chromosome number were isolated from cells with a wide chromosome number distribution, from which subclones with less variation in chromosome number were obtained when subcloning was performed again. These results imply that the characteristics of clones with chromosomal instability are inherited by subclones, and thus provide a better understanding of cell line stability/instability.
Assuntos
Cromossomos , Instabilidade Genômica , Cricetinae , Animais , Células CHO , Cricetulus , Células Clonais , Cromossomos/genética , Proteínas Recombinantes/genética , Instabilidade Genômica/genéticaRESUMO
Chinese hamster ovary (CHO) cells are the most widely used for therapeutic antibody production. In cell line development, engineering secretion processes such as folding-related protein upregulation is an effective way of constructing cell lines with high recombinant protein productivity. However, there have been few studies on the transport of recombinant proteins between the endoplasmic reticulum (ER) and the Golgi apparatus. In this study, Sar1A, a protein involved in COPII vesicle formation, was focused on to improve antibody productivity by enhancing COPII vesicle-mediated antibody transport from the ER to the Golgi apparatus, and to clarify its effect on the secretion process. The constructed Sar1A-overexpressing CHO cell lines were batch-cultured, in which they showed an increased specific antibody production rate. The intracellular antibody accumulation and the specific localization of the intracellular antibodies were investigated by chase assay using a translation inhibitor and observed by immunofluorescence-based imaging analysis. The results showed that Sar1A overexpression reduced intracellular antibody accumulation, especially in the ER. The effects of the engineered antibody transport on the antibody's glycosylation profile and the unfolded protein response (UPR) pathway were analyzed by liquid chromatography-mass spectrometry and UPR-related gene expression evaluation, respectively. Sar1A overexpression lowered glycan galactosylation and induced a stronger UPR at the end of the batch culture. Sar1A overexpression enhanced the antibody productivity of CHO cells by modifying their secretion process. This approach could also contribute to the production of not only monoclonal antibodies but also other therapeutic proteins that require transport by COPII vesicles.
Assuntos
Cricetulus , Retículo Endoplasmático , Complexo de Golgi , Proteínas Recombinantes , Células CHO , Animais , Retículo Endoplasmático/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Complexo de Golgi/metabolismo , Glicosilação , Cricetinae , Resposta a Proteínas não Dobradas , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/genética , Transporte Proteico , Técnicas de Cultura Celular por Lotes/métodosRESUMO
The ß-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E. coli while maintaining the intrinsic thermal stability of the protein (melting temperature (Tm) = 73). We used FoldX's ΔΔG predictions to find beneficial mutations and aggregation-prone regions (APRs) using Tango. The S26K substitution within protein core residues did not affect protein stability. Among the soluble mutants studied, the S26K/Q91P combination significantly improved the expression and solubility of SD1. We also examined the effects of the surface residue, pH, and concentration on the solubility of SD1. We showed that the surface polarity of proteins had little or no effect on solubility, whereas surface charges played a substantial role. The storage stability of several SD1 variants was impaired at pH values near their isoelectric point, and pH levels resulting in highly charged groups. We observed that mutations that create an uneven distribution of charged groups on the SD1 surface could enhance protein solubility by eliminating favorable protein-protein surface charge interactions. Our findings suggest that SD1 is mutationally tolerant to new functionalities, thus providing a novel perspective for the application of rational design to improve the solubility of targeted proteins.
Assuntos
Escherichia coli , Domínios Proteicos , Estabilidade Proteica , Solubilidade , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Engenharia de Proteínas/métodos , Dobramento de Proteína , Mutação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Bioprocess development benefits from kinetic models in many aspects, including scale-up, optimization, and process understanding. However, current models are unable to simulate the production process of a coxsackievirus A6 (CVA6) virus-like particle (VLP) vaccine using Chinese hamster ovary cell culture. In this study, a novel kinetic model was constructed, correlating (1) cell growth, death, and lysis kinetics, (2) metabolism of major metabolites, and (3) CVA6 VLP production. To construct the model, two batches of a laboratory-scale 2 L bioreactor cell culture were prepared and various pH shift strategies were applied to examine the effect of pH shift. The proposed model described the experimental data under various conditions with high accuracy and quantified the effect of pH shift. Next, cell culture performance with various pH shift timings was predicted by the calibrated model. A trade-off relationship was found between product yield and quality. Consequently, multiple objective optimization was performed by integrating desirability methodology with model simulation. Finally, the optimal operating conditions that balanced product yield and quality were predicted. In general, the proposed model improved the process understanding and enabled in silico process development of a CVA6 VLP vaccine. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00598-8.
RESUMO
Respiratory syncytial virus (RSV) infection is an acute respiratory infection caused by RSV. It occurs worldwide, and for over 50 years, several attempts have been made to research and develop vaccines to prevent RSV infection; effective preventive vaccines are eagerly awaited. The RSV fusion (F) protein, which has gained attention as a vaccine antigen, causes a dynamic structural change from the preF to postF state. Therefore, the structural changes in proteins must be regulated to produce a vaccine antigen that can efficiently induce antibodies with high virus-neutralizing activity. We successfully discovered several mutations that stabilized the antigen site Ø in the preF state, trimerized it, and improved the level of protein expression through observation and computational analysis of the RSV-F protein structure and amino acid mutation analysis of RSV strains. The four RSV-F protein mutants that resulted from the combination of these effective mutations stably conserved a wide range of preF- and trimeric preF-specific epitopes with high virus-neutralizing activity. Absorption assay using human serum revealed that mutants constructed bound to antibodies with virus-neutralizing activity that were induced by natural RSV infection, whereas they hardly bound to anti-postF antibodies without virus-neutralizing activity. Furthermore, mouse immunization demonstrated that our constructed mutants induced a high percentage of antibodies that bind to the preF-specific antigen site. These characteristics suggest that the mutants constructed can be superior vaccine antigens from the viewpoint of RSV infection prevention effect and safety.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Proteínas Virais de Fusão , Animais , Humanos , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Camundongos , Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Mutação , Epitopos/imunologia , Epitopos/genética , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/genética , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/genéticaRESUMO
Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.
Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Reatores Biológicos , Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Cricetinae , Anticorpos Monoclonais/biossíntese , Produtos Biológicos/metabolismo , Imunoglobulina G/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Técnicas de Cultura Celular por Lotes/métodosRESUMO
The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher.
Assuntos
Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Engenharia Metabólica , Thermus thermophilus/enzimologia , Biotecnologia/métodos , Biotransformação , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Fixadores/metabolismo , Fumaratos/metabolismo , Glutaral/metabolismo , Temperatura Alta , Malatos/metabolismo , Microscopia Eletrônica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermus thermophilus/genéticaRESUMO
The NfxC-type mutant of Pseudomonas aeruginosa produces the MexEF-OprN efflux pump and down-regulates expression of the quorum-sensing-dependent efflux pump MexAB-OprM and production of virulence factors in the presence of an active transcriptional regulator, MexT. Consequently, these cells are resistant to chloramphenicol and hypersusceptible to ß-lactam antibiotics. An upper negative regulator, MexS, has been assumed to inactivate MexT in wild-type strains, hence shutting down production of the MexEF-OprN pump. This observation was, however, reported in only one clinical strain and not confirmed in well-characterized laboratory strains. Moreover, it is not known whether MexS is involved in the quorum-sensing-dependent regulation of virulence factor production. To assess these issues, a plasmid carrying wild-type mexS was introduced into three NfxC-type mutants from laboratory strains, which carry an impaired mexS and unimpaired mexT. Unexpectedly, all the transformants produced an increased amount of MexEF-OprN proteins. Three clinical NfxC strains were similarly transformed and although MexEF-OprN was undetectable in two of these strains, one produced an increased amount of these proteins, similar to the laboratory strains. These results were interpreted to mean that P. aeruginosa takes two separate routes in MexT-mediated regulation of mexEF-oprN expression: the MexS-bypassed pathway and MexS-mediated pathway. On the other hand, the transformants of both the laboratory and clinically derived NfxC-type cells produced increased amounts of MexAB-OprM and virulence factors, suggesting that production of these proteins occurs via the MexS-mediated pathway.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/genética , Análise de Sequência de DNA , Transformação Bacteriana , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Chromosome identification using Chinese hamster ovary (CHO) genomic bacterial artificial chromosome (BAC) clones has the potential to contribute to the analysis and understanding of chromosomal instability of CHO cell lines and to improve our understanding of chromosome organization during the establishment of recombinant CHO cells. Fluorescence in situ hybridization imaging using BAC clones as probes (BAC-FISH) can provide valuable information for the identification of chromosomes. In this study, we identified chromosomes and analyzed the chromosome rearrangement in CHO cells using BAC-FISH methods.
Assuntos
Aberrações Cromossômicas , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente/métodos , Animais , Células CHO , Cricetinae , CricetulusRESUMO
The process of establishing high-producing cell lines for the manufacture of therapeutic proteins is usually both time-consuming and laborious due to the low probability of obtaining high-producing clones from a pool of transfected cells and slow cell growth under the strong selective pressure of screening to identify high-producing clones. We present a novel method to rapidly generate more high-producing cells by accelerating transgene amplification. A small interfering RNA (siRNA) expression vector against ataxia telangiectasia and Rad3 related (ATR), a cell cycle checkpoint kinase, was transfected into Chinese hamster ovary (CHO) cells. The influences of ATR downregulation on gene amplification and the productivity were investigated in CHO cells producing green fluorescent protein (GFP) and secreting monoclonal antibody (mAb). The ATR-downregulated cells showed up to a 6-fold higher ratio of GFP-positive cells than that of the control cell pool. Moreover, the downregulated mAb-producing cells had about a 4-fold higher specific production rate and a 3-fold higher volumetric productivity as compared with the mock cells. ATR-downregulated cells showed a much faster increase in transgene copy numbers during the gene amplification process via methotrexate (MTX) treatment in both GFP- and mAb-producing cells. Our results suggest that a pool of high-producing cells can be more rapidly generated by ATR downregulation as compared with conventional gene amplification by MTX treatment. This novel method may be a promising approach to reduce time and labor in the process of cell line development.
Assuntos
Biotecnologia/métodos , Pontos de Checagem do Ciclo Celular , Engenharia Genética , Transgenes , Animais , Células CHO , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Cricetulus , Expressão Gênica , Inativação Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNARESUMO
Therapeutic antibodies are attractive biopharmaceuticals because of their high therapeutic effects, fewer side effects, and prolonged half-life in the blood. Chinese hamster ovary (CHO) cells are the most widely used host cell lines to produce therapeutic antibodies in industries. High-producing recombinant CHO cells can be established via overexpression of endogenous proteins. In this study, we focused on the intracellular traffic of an antibody-producing CHO cell line, CHO-HcD6. Assembled antibodies were accumulated in the endoplasmic reticulum (ER) in the cell. We hypothesized that the accumulation was due to the insufficient number of cargo receptors in the cell and focused on a cargo receptor, the ERGIC-53-MCFD2 complex, which transports expressed proteins from the ER to the Golgi apparatus. Overexpression of the cargo receptor transport was expected to improve antibody production. Exogenous ERGIC-53 and MCFD2 were transfected into CHO-HcD6 cells, and overexpressing CHO-HcD6 cells were constructed. As a result of overexpression, antibody productivity increased in batch cultivation. However, the chase assay results and immunofluorescence microscopic observations revealed intracellular IgG accumulation in the overexpressing cells. These results suggest that overexpression of cargo receptors not only promoted extracellular secretion but also enhanced the retention of intracellular antibodies.