Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542433

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a mouse model for two virus-induced organ-specific immune-mediated diseases. TMEV-induced demyelinating disease (TMEV-IDD) in the central nervous system (CNS) is a chronic inflammatory disease with viral persistence and an animal model of multiple sclerosis (MS) in humans. TMEV infection can also cause acute myocarditis with viral replication and immune cell infiltration in the heart, leading to cardiac fibrosis. Since platelets have been reported to modulate immune responses, we aimed to determine the role of platelets in TMEV infection. In transcriptome analyses of platelets, distinct sets of immune-related genes, including major histocompatibility complex (MHC) class I, were up- or downregulated in TMEV-infected mice at different time points. We depleted platelets from TMEV-infected mice by injecting them with platelet-specific antibodies. The platelet-depleted mice had significantly fewer viral antigen-positive cells in the CNS. Platelet depletion reduced the severities of TMEV-IDD and myocarditis, although the pathology scores did not reach statistical significance. Immunologically, the platelet-depleted mice had an increase in interferon (IFN)-γ production with a higher anti-TMEV IgG2a/IgG1 ratio. Thus, platelets may play roles in TMEV infection, such as gene expression, viral clearance, and anti-viral antibody isotype responses.


Assuntos
Esclerose Múltipla , Miocardite , Humanos , Camundongos , Animais , Miocardite/etiologia , Miocardite/metabolismo , Sistema Nervoso Central/metabolismo , Esclerose Múltipla/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Doença Crônica
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769136

RESUMO

Alterations in the gut microbiota, "dysbiosis," have been reported in autoimmune diseases, including multiple sclerosis (MS), and their animal models. Although the animal models were induced by injections of autoantigens with adjuvants, including complete Freund's adjuvant (CFA) and pertussis toxin (PT), the effects of adjuvant injections on the microbiota are largely unknown. We aimed to clarify whether adjuvant injections could affect the microbiota in the ileum and feces. Using 16S rRNA sequencing, we found decreased alpha diversities of the gut microbiota in mice injected with CFA and PT, compared with naïve mice. Overall, microbial profiles visualized by principal component analysis demonstrated dysbiosis in feces, but not in the ileum, of adjuvant-injected mice, where the genera Lachnospiraceae NK4A136 group and Alistipes contributed to dysbiosis. When we compared the relative abundances of individual bacteria, we found changes in 16 bacterial genera in feces and seven genera in the ileum of adjuvant-injected mice, in which increased serum levels of antibody against mycobacteria (a component of CFA) and total IgG2c were correlated with the genus Facklamia. On the other hand, increased IgG1 and IgA concentrations were correlated with the genus Atopostipes. Therefore, adjuvant injections alone could alter the overall microbial profiles (i.e., microbiota) and individual bacterial abundances with altered antibody responses; dysbiosis in animal models could be partly due to adjuvant injections.


Assuntos
Disbiose , Microbioma Gastrointestinal , Camundongos , Animais , Disbiose/induzido quimicamente , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Formação de Anticorpos , Adjuvantes Imunológicos/farmacologia , Bactérias/genética , Fezes/microbiologia , Adjuvante de Freund/farmacologia , Íleo/microbiologia , Antibacterianos/farmacologia , Imunoglobulina G/farmacologia
3.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629117

RESUMO

Anti-glycolipid antibodies have been reported to play pathogenic roles in peripheral inflammatory neuropathies, such as Guillain-Barré syndrome. On the other hand, the role in multiple sclerosis (MS), inflammatory demyelinating disease in the central nervous system (CNS), is largely unknown, although the presence of anti-glycolipid antibodies was reported to differ among MS patients with relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP) disease courses. We investigated whether the induction of anti-glycolipid antibodies could differ among experimental MS models with distinct clinical courses, depending on induction methods. Using three mouse strains, SJL/J, C57BL/6, and A.SW mice, we induced five distinct experimental autoimmune encephalomyelitis (EAE) models with myelin oligodendrocyte glycoprotein (MOG)35-55, MOG92-106, or myelin proteolipid protein (PLP)139-151, with or without an additional adjuvant curdlan injection. We also induced a viral model of MS, using Theiler's murine encephalomyelitis virus (TMEV). Each MS model had an RR, SP, PP, hyperacute, or chronic clinical course. Using the sera from the MS models, we quantified antibodies against 11 glycolipids: GM1, GM2, GM3, GM4, GD3, galactocerebroside, GD1a, GD1b, GT1b, GQ1b, and sulfatide. Among the MS models, we detected significant increases in four anti-glycolipid antibodies, GM1, GM3, GM4, and sulfatide, in PLP139-151-induced EAE with an RR disease course. We also tested cellular immune responses to the glycolipids and found CD1d-independent lymphoproliferative responses only to sulfatide with decreased interleukin (IL)-10 production. Although these results implied that anti-glycolipid antibodies might play a role in remissions or relapses in RR-EAE, their functional roles need to be determined by mechanistic experiments, such as injections of monoclonal anti-glycolipid antibodies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Theilovirus , Animais , Camundongos , Camundongos Endogâmicos C57BL , Sulfoglicoesfingolipídeos , Recidiva Local de Neoplasia , Anticorpos , Glicoproteína Mielina-Oligodendrócito , Glicolipídeos
4.
FASEB J ; 32(5): 2381-2394, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269399

RESUMO

Stroke continues to be a leading cause of death and disability worldwide, yet effective treatments are lacking. Previous studies have indicated that stem-cell transplantation could be an effective treatment. However, little is known about the direct impact of transplanted cells on injured brain tissue. We wanted to help fill this knowledge gap and investigated effects of hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation after ischemia-reperfusion injury (I/RI). Treatment of HSPCs in I/RI for up to 2 wk after cerebral I/RI led to decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation, and reduced cerebral leukocyte adhesion. Confocal microscopy and fluorescence-activated cell sorting analyses showed transplanted HSPCs emigrate preferentially into ischemic cortex brain parenchyma. We isolated migrated HSPCs from the brain; using RNA sequencing to investigate the transcriptome, we found metallothionein (MT, particularly MT-I) transcripts were dramatically up-regulated. Finally, to confirm the significance of MT, we exogenously administered MT-I after cerebral I/RI and found that it produced neuroprotection in a manner similar to HSPC treatment. These findings provide novel evidence that the mechanism through which HSPCs promote repair after stroke maybe via direct action of HSPC-derived MT-I and could therefore be exploited as a useful therapeutic strategy for stroke.-Smith, H. K., Omura, S., Vital, S. A., Becker, F., Senchenkova, E. Y., Kaur, G., Tsunoda, I., Peirce, S. M., Gavins, F. N. E. Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke.


Assuntos
Circulação Cerebrovascular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Metalotioneína/biossíntese , Microcirculação , Acidente Vascular Cerebral , Animais , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
5.
Arch Virol ; 163(5): 1279-1284, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29362931

RESUMO

While most disease-modifying drugs (DMDs) regulate multiple sclerosis (MS) by suppressing inflammation, they can potentially suppress antiviral immunity, causing progressive multifocal leukoencephalopathy (PML). The DMD glatiramer acetate (GA) has been used for MS patients who are at high risk of PML. We investigated whether GA is safe for use in viral infections by using a model of MS induced by infection with Theiler's murine encephalomyelitis virus (TMEV). Treatment of TMEV-infected mice with GA neither enhanced viral loads nor suppressed antiviral immune responses, while it resulted in an increase in the Foxp3/Il17a ratio and IL-4/IL-10 production. This is the first study to suggest that GA could be safe for MS patients with a proven viral infection.


Assuntos
Infecções por Cardiovirus/imunologia , Acetato de Glatiramer/uso terapêutico , Fatores Imunológicos/uso terapêutico , Leucoencefalopatia Multifocal Progressiva/imunologia , Theilovirus/imunologia , Animais , Infecções por Cardiovirus/virologia , Modelos Animais de Doenças , Acetato de Glatiramer/administração & dosagem , Acetato de Glatiramer/efeitos adversos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/efeitos adversos , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-4/biossíntese , Interleucina-4/imunologia , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Theilovirus/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
6.
Brain Behav Immun ; 43: 86-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25046854

RESUMO

In a viral model for multiple sclerosis (MS), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), both immune-mediated tissue damage (immunopathology) and virus persistence have been shown to cause pathology. T helper (Th) 17 cells are a Th cell subset, whose differentiation requires the transcription factor retinoic acid-related orphan receptor (ROR) γt, secrete pro-inflammatory cytokines, including IL-17, and can antagonize Th1 cells. Although Th17 cells have been shown to play a pathogenic role in immune-mediated diseases or a protective role in bacterial and fungal infections, their role in viral infections is unclear. Using newly established Th17-biased RORγt Tg mice, we tested whether Th17 cells could play a pathogenic or protective role in TMEV-IDD by contributing to immunopathology and/or by modulating anti-viral Th1 immune responses. While TMEV-infected wild-type littermate C57BL/6 mice are resistant to TMEV-IDD, RORγt Tg mice developed inflammatory demyelinating lesions with virus persistence in the spinal cord. TMEV-infected RORγt Tg mice had higher levels of IL-17, lower levels of interferon-γ, and fewer CD8(+) T cells, without alteration in overall levels of anti-viral lymphoproliferative and antibody responses, compared with TMEV-infected wild-type mice. This suggests that a Th17-biased "gain-of-function" mutation could increase susceptibility to virus-mediated demyelinating diseases.


Assuntos
Modelos Animais de Doenças , Esclerose Múltipla/imunologia , Medula Espinal/imunologia , Células Th17/imunologia , Theilovirus/imunologia , Animais , Suscetibilidade a Doenças , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/patologia , Esclerose Múltipla/virologia , Medula Espinal/patologia
7.
BMC Neurol ; 15: 219, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26499989

RESUMO

BACKGROUND: Although the precise mechanism of initial lesion development in multiple sclerosis (MS) remains unclear, two different neuropathological findings have been reported as a potential early pathology of MS: "microglial nodules" and "newly forming lesions", both of which contain neither T cell infiltration nor demyelination. In microglial nodules, damaged axons were associated with a small number of aggregated macrophages/microglia, while oligodendrocyte apoptosis was a characteristic in newly forming lesions. However, is the presence of "microglial nodules" and "oligodendrogliopathy" mutually exclusive? Might these two different observations be the same neuropathology (as proposed by the concept, "preactive lesions"), but interpreted differently based on the different theories of early MS lesion development, using different staining methods? DISCUSSION: Since two studies are looking at two distinct aspects of early MS pathogenesis (one focused on axons and the other on oligodendrocytes), in a sense, one can say that these two studies are complementary. On the other hand, experimentally, Wallerian degeneration (WD) has been demonstrated to induce both microglial nodules and oligodendrocyte apoptosis in the central nervous system (CNS). Here, when encephalitogenic T cells are present in the periphery in both autoimmune and viral models of MS, induction of WD in the CNS has been shown to result in the recruitment of T cells along the degenerated tract, leading to demyelination (Inside-Out model). These experimental findings are consistent with early MS pathology described by both "microglial nodules" and "newly forming lesions". CONCLUSIONS: The differences between the two neuropathological findings may be based on the preference of staining methods, where one group observed axonal and microglial pathology and the other observed oligodendrocyte apoptosis; a Janus face that is looked at from the two different sides.


Assuntos
Axônios/patologia , Microglia/patologia , Modelos Neurológicos , Esclerose Múltipla/patologia , Oligodendroglia/patologia , Animais , Humanos
8.
Cell Immunol ; 292(1-2): 85-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25460083

RESUMO

We established a novel model of myocarditis induced with Theiler's murine encephalomyelitis virus (TMEV), which has been used as a viral model for multiple sclerosis and seizure/epilepsy. Following TMEV infection, C3H mice developed severe myocarditis with T cell infiltration, while C57BL/6 mice had mild lesions and SJL/J mice had no inflammation in the heart. In C3H mice, myocarditis was divided into three phases: acute viral, subacute immune, and chronic fibrotic phases. Using toll-like receptor (TLR) 4-deficient C3H mice, we found that interleukin (IL)-6, IL-17, TLR4, and anti-viral immune responses were associated with myocarditis susceptibility.


Assuntos
Miocardite/imunologia , Linfócitos T/imunologia , Theilovirus/fisiologia , Replicação Viral , Animais , Fibrose/imunologia , Cinética , Camundongos Endogâmicos , Miocardite/patologia , Miocardite/virologia
9.
Int J Mol Sci ; 15(2): 1700-18, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24463292

RESUMO

T helper (Th)2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS). This is mainly based on "loss-of-function" studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE), using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses ("gain-of-function" approach) could alter EAE, the approach of novel GATA binding protein 3 (GATA3)-transgenic (tg) mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL)-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.


Assuntos
Fator de Transcrição GATA3/genética , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Complexo CD3/metabolismo , Citocinas/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Fator de Transcrição GATA3/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Mutação , Glicoproteína Mielina-Oligodendrócito/imunologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
10.
J Neuroinflammation ; 10: 125, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24124909

RESUMO

BACKGROUND: Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. METHODS: We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler's murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. RESULTS AND CONCLUSIONS: Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.


Assuntos
Encéfalo/imunologia , Glicoproteínas de Membrana/biossíntese , Esclerose Múltipla/imunologia , Proteínas de Transporte Vesicular/biossíntese , Idoso , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Endotélio Linfático/imunologia , Endotélio Linfático/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Neurônios/patologia , Análise de Componente Principal , Theilovirus , Proteínas de Transporte Vesicular/análise
11.
Pathophysiology ; 20(1): 71-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22633747

RESUMO

Multiple sclerosis (MS) is a disease which can presents in different clinical courses. The most common form of MS is the relapsing-remitting (RR) course, which in many cases evolves into secondary progressive (SP) disease. Autoimmune models such as experimental autoimmune encephalomyelitis (EAE) have been developed to represent the various clinical forms of MS. These models along with clinico-pathological evidence obtained from MS patients have allowed us to propose '1-stage' and '2-stage' disease theories to explain the transition in the clinical course of MS from RR to SP. Relapses in MS are associated with pro-inflammatory T helper (Th) 1/Th17 immune responses, while remissions are associated with anti-inflammatory Th2/regulatory T (Treg) immune responses. Based on the '1-stage disease' theory, the transition from RR to SP disease occurs when the inflammatory immune response overwhelms the anti-inflammatory immune response. The '2-stage disease' theory proposes that the transition from RR to SP-MS occurs when the Th2 response or some other responses overwhelm the inflammatory response resulting in the sustained production of anti-myelin antibodies, which cause continuing demyelination, neurodegeneration, and axonal loss. The Theiler's virus model is also a 2-stage disease, where axonal degeneration precedes demyelination during the first stage, followed by inflammatory demyelination during the second stage.

12.
Sci Rep ; 12(1): 21837, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528634

RESUMO

Exploratory factor analysis (EFA) has been developed as a powerful statistical procedure in psychological research. EFA's purpose is to identify the nature and number of latent constructs (= factors) underlying a set of observed variables. Since the research goal of EFA is to determine what causes the observed responses, EFA is ideal for hypothesis-based studies, such as identifying the number and nature of latent factors (e.g., cause, risk factors, etc.). However, the application of EFA in the biomedical field has been limited. Guillain-Barré syndrome (GBS) is peripheral neuropathy, in which the presence of antibodies to glycolipids has been associated with clinical signs. Although the precise mechanism for the generation of anti-glycolipid antibodies is unclear, we hypothesized that latent factors, such as distinct autoantigens and microbes, could induce different sets of anti-glycolipid antibodies in subsets of GBS patients. Using 55 glycolipid antibody titers from 100 GBS and 30 control sera obtained by glycoarray, we conducted EFA and extracted four factors related to neuroantigens and one potentially suppressive factor, each of which was composed of the distinct set of anti-glycolipid antibodies. The four groups of anti-glycolipid antibodies categorized by unsupervised EFA were consistent with experimental and clinical findings reported previously. Therefore, we proved that unsupervised EFA could be applied to biomedical data to extract latent factors. Applying EFA for other biomedical big data may elucidate latent factors of other diseases with unknown causes or suppressing/exacerbating factors, including COVID-19.


Assuntos
COVID-19 , Síndrome de Guillain-Barré , Humanos , Autoanticorpos , Glicolipídeos , Análise Fatorial , Gangliosídeos
13.
Sci Rep ; 12(1): 11361, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851044

RESUMO

The COVID-19 pandemic has led people to wear face masks daily in public. Although the effectiveness of face masks against viral transmission has been extensively studied, there have been few reports on potential hygiene issues due to bacteria and fungi attached to the face masks. We aimed to (1) quantify and identify the bacteria and fungi attaching to the masks, and (2) investigate whether the mask-attached microbes could be associated with the types and usage of the masks and individual lifestyles. We surveyed 109 volunteers on their mask usage and lifestyles, and cultured bacteria and fungi from either the face-side or outer-side of their masks. The bacterial colony numbers were greater on the face-side than the outer-side; the fungal colony numbers were fewer on the face-side than the outer-side. A longer mask usage significantly increased the fungal colony numbers but not the bacterial colony numbers. Although most identified microbes were non-pathogenic in humans; Staphylococcus epidermidis, Staphylococcus aureus, and Cladosporium, we found several pathogenic microbes; Bacillus cereus, Staphylococcus saprophyticus, Aspergillus, and Microsporum. We also found no associations of mask-attached microbes with the transportation methods or gargling. We propose that immunocompromised people should avoid repeated use of masks to prevent microbial infection.


Assuntos
COVID-19 , Bactérias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Higiene , Máscaras , Pandemias/prevenção & controle
15.
Front Cell Infect Microbiol ; 12: 805302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198458

RESUMO

Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and axonal degeneration in the central nervous system (CNS). Bacterial and fungal infections have been associated with the development of MS; microbial components that are present in several microbes could contribute to MS pathogenesis. Among such components, curdlan is a microbial 1,3-ß-glucan that can stimulate dendritic cells, and enhances T helper (Th) 17 responses. We determined whether curdlan administration could affect two animal models for MS: an autoimmune model, experimental autoimmune encephalomyelitis (EAE), and a viral model, Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). We induced relapsing-remitting EAE by sensitizing SJL/J mice with the myelin proteolipid protein (PLP)139-151 peptide and found that curdlan treatment prior to PLP sensitization converted the clinical course of EAE into hyperacute EAE, in which the mice developed a progressive motor paralysis and died within 2 weeks. Curdlan-treated EAE mice had massive infiltration of T cells and neutrophils in the CNS with higher levels of Th17 and Th1 responses, compared with the control EAE mice. On the other hand, in TMEV-IDD, we found that curdlan treatment reduced the clinical scores and axonal degeneration without changes in inflammation or viral persistence in the CNS. In summary, although curdlan administration exacerbated the autoimmune MS model by enhancing inflammatory demyelination, it suppressed the viral MS model with reduced axonal degeneration. Therefore, microbial infections may play contrasting roles in MS depending on its etiology: autoimmunity versus viral infection.


Assuntos
Esclerose Múltipla , Theilovirus , beta-Glucanas , Animais , Modelos Animais de Doenças , Camundongos , Esclerose Múltipla/patologia
16.
Front Cell Infect Microbiol ; 11: 772962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926318

RESUMO

We developed a prodrug type of curcumin, curcumin monoglucuronide (CMG), whose intravenous/intraperitoneal injection achieves a high serum concentration of free-form curcumin. Although curcumin has been reported to alter the gut microbiota and immune responses, it is unclear whether the altered microbiota could be associated with inflammation in immune-mediated diseases, such as multiple sclerosis (MS). We aimed to determine whether CMG administration could affect the gut microbiota at three anatomical sites (feces, ileal contents, and the ileal mucosa), leading to suppression of inflammation in the central nervous system (CNS) in an autoimmune model for MS, experimental autoimmune encephalomyelitis (EAE). We injected EAE mice with CMG, harvested the brains and spinal cords for histological analyses, and conducted microbiome analyses using 16S rRNA sequencing. CMG administration modulated EAE clinically and histologically, and altered overall microbiota compositions in feces and ileal contents, but not the ileal mucosa. Principal component analysis (PCA) of the microbiome showed that principal component (PC) 1 values in ileal contents, but not in feces, correlated with the clinical and histological EAE scores. On the other hand, when we analyzed the individual bacteria of the microbiota, the EAE scores correlated with significant increases in the relative abundance of two bacterial species at each anatomical site: Ruminococcus bromii and Blautia (Ruminococcus) gnavus in feces, Turicibacter sp. and Alistipes finegoldii in ileal contents, and Burkholderia spp. and Azoarcus spp. in the ileal mucosa. Therefore, CMG administration could alter the gut microbiota at the three different sites differentially in not only the overall gut microbiome compositions but also the abundance of individual bacteria, each of which was associated with modulation of neuroinflammation.


Assuntos
Curcumina , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Fezes , Glucuronídeos , Íleo , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , RNA Ribossômico 16S/genética
17.
Front Immunol ; 11: 550366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072090

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) induce ulcers in the gastrointestinal tract, including the stomach and small intestine. NSAID-induced gastric ulcers can be prevented by taking acid-neutralizing/inhibitory drugs and cytoprotective agents. In contrast, there are no medicines to control NSAID-induced small intestinal ulcers, which are accompanied by a mucosal invasion of bacteria and subsequent activation of immune cells. Galectin-3 (Gal3), an endogenous lectin, has anti-microbial and pro-inflammatory functions. In the small intestine, since Gal3 is highly expressed in epithelial cells constitutively and macrophages inducibly, the Gal3 level can affect microbiota composition and macrophage activation. We hypothesized that the modulation of Gal3 expression could be beneficial in NSAID-induced intestinal ulcers. Using Gal3 knockout (Gal3KO) mice, we determined whether Gal3 could be a therapeutic target in NSAID-induced intestinal ulcers. Following the administration of indomethacin, an NSAID, we found that small intestinal ulcers were less severe in Gal3KO mice than in wild-type (WT) mice. We also found that the composition of intestinal microbiota was different between WT and Gal3KO mice and that bactericidal antibiotic polymyxin B treatment significantly suppressed NSAID-induced ulcers. Furthermore, clodronate, a macrophage modulator, attenuated NSAID-induced ulcers. Therefore, Gal3 could be an exacerbating factor in NSAID-induced intestinal ulcers by affecting the intestinal microbiota population and macrophage activity. Inhibition of Gal3 may be a therapeutic strategy in NSAID-induced intestinal ulcers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03832946.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Enteropatias/etiologia , Enteropatias/metabolismo , Úlcera/etiologia , Úlcera/metabolismo , Animais , Biomarcadores , Proteínas Sanguíneas/antagonistas & inibidores , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Galectinas/antagonistas & inibidores , Imunofenotipagem , Enteropatias/tratamento farmacológico , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Úlcera/tratamento farmacológico
18.
Front Immunol ; 11: 1138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733435

RESUMO

Virus infections have been associated with acute and chronic inflammatory central nervous system (CNS) diseases, e.g., acute flaccid myelitis (AFM) and multiple sclerosis (MS), where animal models support the pathogenic roles of viruses. In the spinal cord, Theiler's murine encephalomyelitis virus (TMEV) induces an AFM-like disease with gray matter inflammation during the acute phase, 1 week post infection (p.i.), and an MS-like disease with white matter inflammation during the chronic phase, 1 month p.i. Although gut microbiota has been proposed to affect immune responses contributing to pathological conditions in remote organs, including the brain pathophysiology, its precise role in neuroinflammatory diseases is unclear. We infected SJL/J mice with TMEV; harvested feces and spinal cords on days 4 (before onset), 7 (acute phase), and 35 (chronic phase) p.i.; and examined fecal microbiota by 16S rRNA sequencing and CNS transcriptome by RNA sequencing. Although TMEV infection neither decreased microbial diversity nor changed overall microbiome patterns, it increased abundance of individual bacterial genera Marvinbryantia on days 7 and 35 p.i. and Coprococcus on day 35 p.i., whose pattern-matching with CNS transcriptome showed strong correlations: Marvinbryantia with eight T-cell receptor (TCR) genes on day 7 and with seven immunoglobulin (Ig) genes on day 35 p.i.; and Coprococcus with gene expressions of not only TCRs and IgG/IgA, but also major histocompatibility complex (MHC) and complements. The high gene expression of IgA, a component of mucosal immunity, in the CNS was unexpected. However, we observed substantial IgA positive cells and deposition in the CNS, as well as a strong correlation between CNS IgA gene expression and serum anti-TMEV IgA titers. Here, changes in a small number of distinct gut bacteria, but not overall gut microbiota, could affect acute and chronic immune responses, causing AFM- and MS-like lesions in the CNS. Alternatively, activated immune responses would alter the composition of gut microbiota.


Assuntos
Viroses do Sistema Nervoso Central/imunologia , Viroses do Sistema Nervoso Central/microbiologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/microbiologia , Microbioma Gastrointestinal , Mielite/imunologia , Mielite/microbiologia , Doenças Neuromusculares/imunologia , Doenças Neuromusculares/microbiologia , Animais , Infecções por Cardiovirus/complicações , Infecções por Cardiovirus/imunologia , Doença Crônica , Biologia Computacional , Imunoglobulina A/imunologia , Camundongos , Theilovirus , Transcriptoma , Regulação para Cima
19.
Anticancer Res ; 39(2): 597-607, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711935

RESUMO

BACKGROUND: Glioma stem cells (GSCs) play important roles in the tumorigenesis of glioblastoma multiforme (GBM). Using a novel cellular bioinformatics pipeline, we aimed to characterize the differences in gene-expression profiles among GSCs, U251 (glioma cell line), and a human GBM tissue sample. MATERIALS AND METHODS: Total RNA was extracted from GSCs, U251 and GBM and microarray analysis was performed; the data were then applied to the bioinformatics pipeline consisting of a principal component analysis (PCA) with factor loadings, an intracellular pathway analysis, and an immunopathway analysis. RESULTS: The PCA clearly distinguished the three groups. The factor loadings of the PCA suggested that v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), dipeptidyl-peptidase 4 (DPP4), and macrophage migration-inhibitory factor (MIF) contribute to the stemness of GSCs. The intracellular pathway and immunopathway analyses provided relevant information about the functions of representative genes in GSCs. CONCLUSION: The newly-developed cellular bioinformatics pipeline was a useful method to clarify the similarities and differences among samples.


Assuntos
Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/citologia , Apoptose , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Dipeptidil Peptidase 4/metabolismo , Feminino , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Pessoa de Meia-Idade , Proteína Proto-Oncogênica N-Myc/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Análise de Sequência de RNA , Transdução de Sinais
20.
Front Immunol ; 10: 516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941144

RESUMO

Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining.


Assuntos
Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Animais , Biomarcadores/metabolismo , Sistema Nervoso Central/metabolismo , Biologia Computacional/métodos , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos , Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA