RESUMO
Diosgenin (DGN), which is a sterol occurring in plants of the Dioscorea family, has attracted increasing attention for its various pharmacological activities. DGN has a structural similarity to cholesterol (Cho). In this study we investigated the effects of the common tetracyclic cores and the different side chains on the physicochemical properties of lipid bilayer membranes. Differential scanning calorimetry showed that DGN and Cho reduce the phase transition enthalpy to a similar extent. In 2H NMR, deuterated-DGN/Cho and POPC showed similar ordering in POPC bilayers, which revealed that DGN is oriented parallel to the membrane normal like Cho. It was suggested that the affinity of DGN-Cho in membrane is stronger than that of DGN-DGN or Cho-Cho interaction. 31P NMR of POPC in bilayers revealed that, unlike Cho, DGN altered the interactions of POPC headgroups at 30 mol%. These results suggest that DGN below 30 mol% has similar effects with Cho on basic biomembrane properties.
Assuntos
Colesterol/química , Diosgenina/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Varredura Diferencial de Calorimetria , Físico-Química , Dioscorea/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , TermodinâmicaRESUMO
Saponin is the main bioactive component of the Dioscorea species, which are traditionally used for treating chronic diseases. An understanding of the interaction process of bioactive saponins with biomembranes provides insights into their development as therapeutic agents. The biological effects of saponins have been thought to be associated with membrane cholesterol (Chol). To shed light on the exact mechanisms of their interactions, we investigated the effects of diosgenyl saponins trillin (TRL) and dioscin (DSN) on the dynamic behavior of lipids and membrane properties in palmitoyloleolylphosphatidylcholine (POPC) bilayers using solid-state NMR and fluorescence spectroscopy. The membrane effects of diosgenin, a sapogenin of TRL and DSN, are similar to those of Chol, suggesting that diosgenin plays a major role in membrane binding and POPC chain ordering. The amphiphilicity of TRL and DSN enabled them to interact with POPC bilayers, regardless of Chol. In the presence of Chol, the sugar residues more prominently influenced the membrane-disrupting effects of saponins. The activity of DSN, which bears three sugar units, led to perturbation and further disruption of the membrane in the presence of Chol. However, TRL, which bears one sugar residue, increased the ordering of POPC chains while maintaining the integrity of the bilayer. This effect on the phospholipid bilayers is similar to that of cholesteryl glucoside. The influence of the number of sugars in saponin is discussed in more detail.