Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 112(6): 3915-3924, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32629096

RESUMO

The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.


Assuntos
Encéfalo/fisiologia , Evolução Molecular , Limosilactobacillus fermentum/química , Fator Tu de Elongação de Peptídeos/química , Proteínas/química , Humanos , Conformação Proteica
2.
Pharmacol Res ; 146: 104312, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31207344

RESUMO

Aging is closely associated with altered gut function and composition, in which elderly were reported with reduced gut microbiota diversity and increased incidence of age-related diseases. Probiotics have been shown to exert beneficial health-promoting effects through modulation of intestinal microflora biodiversity, thus the effects of probiotics administration on D-galactose (D-gal) senescence-induced rat were evaluated based on the changes in gut microbiota and metabolomic profiles. Upon senescence induction, the ratio of Firmicutes/ Bacteroidetes was significantly lowered, while treatment with Lactobacillus helveticus OFS 1515 and L. fermentum DR9 increased the ratio at the phylum level (P < 0.05). Study on the genus level showed that L. paracasei OFS 0291 and L. helveticus OFS 1515 administration reduced Bacteroides, which are prominently opportunistic pathogens while L. fermentum DR9 treated rats promoted the proliferation of Lactobacillus compared to the aged rats (P < 0.05). Probiotics treatment did not alter fecal short-chain fatty acid (SCFA) profile, but an increase in acetate was observed in the D-gal rats. The analysis of fecal water-soluble metabolites showed that D-gal induced senescence caused great impact on amino acids metabolism such as urocanic acid, citrulline, cystamine and 5-oxoproline, which could serve as potential aging biomarkers. Treatment with probiotics ameliorated these metabolites in a strain-specific manner, whereby L. fermentum DR9 promoted antioxidative effect through upregulation of oxoproline, whereas both L. paracasei OFS 0291 and L. helveticus OFS 1515 restored the levels of reducing sugars, arabinose and ribose similar to the young rats. D-gal induced senescence did cause significant immunological alteration in the colon of aged rats however, all probiotic strains demonstrated immunomodulatory properties as L. paracasei OFS 0291, L. helveticus OFS 1515 and L. fermentum DR9 alleviated proinflammatory cytokines TNF-α, IFN-γ and IL-1ß as well as IL-4 compared to the aged control (P < 0.05). Our study highlights the potential of probiotics as an anti-aging therapy through healthy gut modulation.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Microbioma Gastrointestinal/fisiologia , Lactobacillus/fisiologia , Microbiota/fisiologia , Animais , Colo/metabolismo , Colo/microbiologia , Citocinas/metabolismo , Fezes/microbiologia , Masculino , Modelos Animais , Probióticos/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Prev Nutr Food Sci ; 27(1): 1-13, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35465109

RESUMO

Owing to their long history of safe use, probiotic microorganisms, typically from the genus Lactobacillus, have long been recognized, especially in traditional and fermented food industries. Although conventionally used for dairy, meat, and vegetable fermentation, the use of probiotics in health foods, supplements, and nutraceuticals has gradually increased. Over the past two decades, the importance of probiotics in improving gut health and immunity as well as alleviating metabolic diseases has been recognized. The new concept of a gut-heart-brain axis has led to the development of various innovations and strategies related to the introduction of probiotics in food and diet. Probiotics influence gut microbiota profiles, inflammation, and disorders and directly impact brain neurotransmitter pathways. As brain health often declines with age, the concept of probiotics being beneficial for the aging brain has also gained much momentum and emphasis in both research and product development. In this review, the concept of the aging brain, different in vivo aging models, and various aging-related benefits of probiotics are discussed.

4.
Probiotics Antimicrob Proteins ; 12(1): 125-137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659503

RESUMO

This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p < 0.05) the cell number of Staphylococcus aureus by 106 CFU/mL and reduced biofilm thickness by 55% in S. aureus-infected porcine skins. Genome-wide analysis and gene expression analysis illustrated the production of several plantaricins, especially the plantaricins EF and JK that enhanced the anti-staphylococcal effects of L. plantarum USM8613. In vivo data using rats showed that the protein-rich fraction from L. plantarum USM8613 exerted wound healing properties via direct inhibition of S. aureus and promoted innate immunity, in which the expression of ß-defensin was significantly (p < 0.05) upregulated by 3.8-fold. The protein fraction from L. plantarum USM8613 also significantly enhanced (p < 0.05) the production of cytokines and chemokines through various stages of wound recovery. Using ∆atl S. aureus, the protein-rich fraction from L. plantarum USM8613 exerted inhibitory activity via targeting the atl gene in S. aureus. Taken altogether, our present study illustrates the potential of L. plantarum USM8613 in aiding wound healing, suppressing of S. aureus infection at wound sites and promoting host innate immunity.


Assuntos
Antibacterianos , Bacteriocinas , Lactobacillus plantarum/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bacteriocinas/administração & dosagem , Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/microbiologia , Suínos , Cicatrização/efeitos dos fármacos
5.
J Biotechnol ; 300: 20-31, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31095980

RESUMO

Increasing levels of antibiotic resistance in pathogens, including Staphylococcus aureus, remains a serious problem for public health, leading to the need for better alternative antimicrobial strategies. The antimicrobial proteins produced by Lactobacillus plantarum USM8613 attributed to its anti-staphylococcal activity were identified as extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), both with different mechanisms of action. Extracellular transglycosylase, which contains a LysM domain, exerts a cell wall-mediated killing mechanism, while GADPH penetrates into S. aureus cells and subsequently induces the overexpression of autolysis regulators, resulting in S. aureus autolysis. Both extracellular transglycosylase and GADPH exert anti-inflammatory effects in S. aureus-infected HaCaT cells by reducing the expression and production of TLR-2, hBDs and various pro-inflammatory cytokines (IL-1α, IL-1ß, IL-6, TNF-α, and IL-8). Taken together, extracellular transglycosylase and GADPH produced by L. plantarum USM8613 could potentially be applied as an alternative therapeutic agent to treat S. aureus skin infections and promote skin health.


Assuntos
Antibacterianos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/farmacologia , Glicosiltransferases/farmacologia , Lactobacillus plantarum/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Linhagem Celular , Citocinas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/isolamento & purificação , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/isolamento & purificação , Glicosiltransferases/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia
6.
Appl Biochem Biotechnol ; 174(4): 1496-1509, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25119552

RESUMO

This study aimed to evaluate the effects of electroporation on growth, bioconversion of isoflavones, and probiotic properties of parent organisms and subsequent passages of Bifidobacterium longum FTDC 8643. Electroporation with the strength of electric field at 7.5 kV cm(-1) for 3.5 ms was applied on B. longum FTDC 8643. The viability of B. longum FTDC 8643 increased significantly upon treatment with electroporation. Such treatment also enhanced the intracellular and extracellular ß-glucosidase activity, leading to enhanced production of bioactive isoflavone aglycones in mannitol-soymilk (P < 0.05). In addition, these treated cells also exhibited better tolerance toward acidic (pH 2 and pH 3) and intestinal bile salt condition compared to the control (P < 0.05). The electroporated cell also possessed better adhesion ability and antimicrobial activity (P < 0.05). However, all these positive effects were only prevalent in the parent cells and were not observed in their subsequent passages of electroporated cells. Our results suggested that electroporation could enhance the bioactive and probiotic potentials of parent cells of B. longum FTDC 8643 and could be used in the production of probiotic foods with enhanced bioactivity.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Eletroporação , Isoflavonas/biossíntese , Probióticos , Aderência Bacteriana/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Manitol/farmacologia , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA