RESUMO
Autotaxin is a dual-function ecto-enzyme, encoded by the gene ENPP2, which is the primary source of the bioactive signaling lipid, lysophosphatidic acid. Aberrations in autotaxin/lysophosphatidic acid signaling have been associated with a number of neurological, psychiatric, neoplastic, and neurodevelopmental conditions, such as pain, pruritus, glioblastoma multiforme, multiple sclerosis, Alzheimer's disease, hydrocephalus, and schizophrenia. This Viewpoint offers a brief overview of the likely indications for therapeutic targeting of autotaxin, in disorders affecting the nervous system.
Assuntos
Lisofosfolipídeos/farmacologia , Complexos Multienzimáticos/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Diester Fosfórico Hidrolases/efeitos dos fármacos , Animais , Glioblastoma/tratamento farmacológico , Humanos , Lisofosfolipídeos/química , Transdução de Sinais/efeitos dos fármacosRESUMO
Ayurvedic medicine is a personalized system of traditional medicine native to India and the Indian subcontinent. It is based on a holistic view of treatment which promotes and supports equilibrium in different aspects of human life: the body, mind, and soul. Popular Ayurvedic medicinal plants and formulations that are used to slow down brain aging and enhance memory include Ashwagandha (Withania somnifera), Turmeric (Curcuma longa), Brahmi (Bacopa monnieri), Shankhpushpi (Convolvulus pluricaulis, Evolvulus alsinoides, and other species), gotu kola (Centella asiatica), and guggulu (Commiphora mukul and related species) and a formulation known as Brahmi Ghrita, containing Brahmi, Vaca (Acorus calamus), Kustha (Saussurea lappa), Shankhpushpi, and Purana Ghrita (old clarified butter/old ghee). The rationale for the utilization of Ayurvedic medicinal plants has depended mostly on traditional usage, with little scientific data on signal transduction processes, efficacy, and safety. However, in recent years, pharmacological and toxicological studies have begun to be published and receive attention from scientists for verification of their claimed pharmacological and therapeutic effects. The purpose of this review is to outline the molecular mechanisms, signal transduction processes, and sites of action of some Ayurvedic medicinal plants. It is hoped that this description can be further explored with modern scientific methods, to reveal new therapeutic leads and jump-start more studies on the use of Ayurvedic medicine for prevention and treatment of dementia.