Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 81(7): 2395-407, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616798

RESUMO

Small- and medium-size farms in the mid-Atlantic region of the United States use varied agricultural practices to produce leafy greens during spring and fall, but the impact of preharvest practices on food safety risk remains unclear. To assess farm-level risk factors, bacterial indicators, Salmonella enterica, and Shiga toxin-producing Escherichia coli (STEC) from 32 organic and conventional farms were analyzed. A total of 577 leafy greens, irrigation water, compost, field soil, and pond sediment samples were collected. Salmonella was recovered from 2.2% of leafy greens (n = 369) and 7.7% of sediment (n = 13) samples. There was an association between Salmonella recovery and growing season (fall versus spring) (P = 0.006) but not farming system (organic or conventional) (P = 0.920) or region (P = 0.991). No STEC was isolated. In all, 10% of samples were positive for E. coli: 6% of leafy greens, 18% of irrigation water, 10% of soil, 38% of sediment, and 27% of compost samples. Farming system was not a significant factor for levels of E. coli or aerobic mesophiles on leafy greens but was a significant factor for total coliforms (TC) (P < 0.001), with higher counts from organic farm samples. Growing season was a factor for aerobic mesophiles on leafy greens (P = 0.004), with higher levels in fall than in spring. Water source was a factor for all indicator bacteria (P < 0.001), and end-of-line groundwater had marginally higher TC counts than source samples (P = 0.059). Overall, the data suggest that seasonal events, weather conditions, and proximity of compost piles might be important factors contributing to microbial contamination on farms growing leafy greens.


Assuntos
Agricultura/métodos , Inocuidade dos Alimentos , Salmonella enterica/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Verduras/microbiologia , Carga Bacteriana , Enterobacteriaceae/isolamento & purificação , Mid-Atlantic Region , Medição de Risco , Estações do Ano
2.
Int J Food Microbiol ; 316: 108480, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862511

RESUMO

Tomatoes have been linked to Salmonella outbreaks in the United States (US). Plasticulture systems, that combine raised beds, plastic mulch, drip irrigation and fumigation, are common in commercial staked fresh tomato production in the US. The US FDA Produce Safety Rule prohibits the distribution of any produce covered by the rule (including fresh market tomatoes) that drops to the ground before harvest. This research was undertaken to better characterize the risks posed by tomatoes that touch plastic mulch or soil immediately before or during harvest. Research was conducted in three states (Florida, Maryland, and Ohio). Each state utilized tomatoes from their state at the point of harvest maturity most common in that state. Each state used indigenous soil and plastic mulch for transfer scenarios. New plastic mulch obtained directly from the application roll and used plastic mulch that had been present on beds for a growing season were evaluated. A five-strain cocktail of Salmonella enterica isolates obtained from tomato outbreaks was used. Mulch (new or used), soil, or tomatoes were spot inoculated with 100 µl of inoculum to obtain a final population of ~6 log CFU/surface. Items were either touched to each other immediately (1-2 s) after inoculation (wet contact) or allowed to dry at ambient temperature for 1 h or 24 h (dry contact). All surfaces remained in brief (1-5 s) or extended (24 h) contact at ambient temperature. Transfer of Salmonella between a tomato and plastic mulch or soil is dependent on contact time, dryness of the inoculum, type of soil, and contact surface. Transfer of Salmonella to and from the mulch and tomatoes for wet and 1 h dry inocula were similar with mean log % transfers varying from 0.7 ± 0.2 to 1.9 ± 0.1. The transfer of Salmonella between soil or plastic mulch to and from tomatoes was dependent on moisture with wet and 1 h dry inocula generally yielding significantly (p < 0.05) higher transfer than the 24 h dry inoculum. Results indicate that harvesting dry tomatoes significantly (p < 0.05) reduces the risk of contamination from soil or mulch contact. Transfer to tomatoes was generally significantly greater (p < 0.05) from new and used plastic mulch than from soil. If contamination and moisture levels are equivalent and contact times are equal to or <24 h before harvest, significantly (p < 0.05) more Salmonella transfers to tomatoes from mulch than from soil. Our findings support that harvesting tomatoes from soil has similar or lower risk than harvesting from plastic mulch.


Assuntos
Agricultura/métodos , Plásticos , Salmonella enterica/isolamento & purificação , Microbiologia do Solo , Solanum lycopersicum/microbiologia , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Plásticos/efeitos adversos , Solo/química , Água/efeitos adversos , Água/análise
3.
J Food Prot ; 78(10): 1791-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26408127

RESUMO

Concerns about the microbiological safety of fresh produce have attracted attention in the past three decades due to multiple foodborne outbreaks. Animal manure contaminated with enteric pathogens has been identified as an important preharvest pathogen source. This study investigated the survival of Salmonella enterica in dust particles of dehydrated turkey manure and how association with manure dust may enhance the survival of salmonellae on leafy greens in the field. The survival of a cocktail of multiple Salmonella serotypes in the dried fecal material of various particle sizes (125 to 500 µm) was examined at varying moisture contents (5, 10, and 15%). Survival times of the pathogen were inversely related to moisture content and particle size of manure dust, with viable Salmonella still detectable for up to 291 days in the smallest particle size (125 µm) with 5% moisture. Association with manure dust particles increased the survival of Salmonella when subjected to UV light both under laboratory conditions and on the surface of spinach leaves in a greenhouse setting. The results of this study suggest that aerosolized manure particles could be a potential vehicle for Salmonella dispersal to leafy greens if the microorganism is present in the dry manure.


Assuntos
Esterco/microbiologia , Folhas de Planta/microbiologia , Salmonella enterica/isolamento & purificação , Spinacia oleracea/microbiologia , Animais , Fezes , Concentração de Íons de Hidrogênio , Dinâmica não Linear , Suínos
4.
Int J Food Microbiol ; 196: 98-108, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25540859

RESUMO

In the mid-Atlantic region of the United States, small- and medium-sized farmers use varied farm management methods and water sources to produce tomatoes. It is unclear whether these practices affect the food safety risk for tomatoes. This study was conducted to determine the prevalence, and assess risk factors for Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) and bacterial indicators in pre-harvest tomatoes and their production areas. A total of 24 organic and conventional, small- to medium-sized farms were sampled for six weeks in Maryland (MD), Delaware (DE) and New Jersey (NJ) between July and September 2012, and analyzed for indicator bacteria, Salmonella and STEC. A total of 422 samples--tomato fruit, irrigation water, compost, field soil and pond sediment samples--were collected, 259 of which were tomato samples. A low level of Salmonella-specific invA and Shiga toxin genes (stx1 or stx2) were detected, but no Salmonella or STEC isolates were recovered. Of the 422 samples analyzed, 9.5% were positive for generic E. coli, found in 5.4% (n=259) of tomato fruits, 22.5% (n=102) of irrigation water, 8.9% (n=45) of soil, 3/9 of pond sediment and 0/7 of compost samples. For tomato fruit, farming system (organic versus conventional) was not a significant factor for levels of indicator bacteria. However, the total number of organic tomato samples positive for generic E. coli (1.6%; 2/129) was significantly lower than for conventional tomatoes (6.9% (9/130); (χ(2) (1)=4.60, p=0.032)). Region was a significant factor for levels of Total Coliforms (TC) (p=0.046), although differences were marginal, with western MD having the highest TC counts (2.6 log CFU/g) and NJ having the lowest (2.0 log CFU/g). Tomatoes touching the ground or plastic mulch harbored significantly higher levels of TC compared to vine tomatoes, signaling a potential risk factor. Source of irrigation water was a significant factor for all indicator bacteria (p<0.0001), and groundwater had lower bacterial levels than surface water. End of line surface water samples were not significantly different from source water samples, but end of line groundwater samples had significantly higher bacterial counts than source (p<0.0001), suggesting that Good Agricultural Practices that focus on irrigation line maintenance might be beneficial. In general, local effects other than cropping practices, including topography, land use and adjacent industries, might be important factors contributing to microbiological inputs on small- and medium-sized farms in the mid-Atlantic region.


Assuntos
Agricultura , Fenômenos Fisiológicos Bacterianos , Inocuidade dos Alimentos , Frutas/microbiologia , Microbiologia do Solo , Solanum lycopersicum/microbiologia , Bactérias/isolamento & purificação , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Água Doce/microbiologia , Mid-Atlantic Region , Fatores de Risco , Salmonella enterica/isolamento & purificação , Salmonella enterica/fisiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA