Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867320

RESUMO

Allium cepa, commonly known as onion, is a widely consumed spice that possesses numerous pharmacological properties. A. cepa bioactive components are often explored in the treatment of inflammation-related complications. However, the molecular mechanism via which they exert their anti-inflammatory effects remains unknown. Therefore, this study aimed to elucidate the anti-inflammatory mechanism of A. cepa bioactive components. Consequently, the bioactive compounds of A. cepa were obtained from a database, while the potential targets of the sixty-nine compounds with desirable pharmacokinetic properties were predicted. Subsequently, the targets of inflammation were acquired from the GeneCards database. The protein-protein interaction (PPI) between the sixty-six shared targets of the bioactive compounds and inflammation was retrieved from the String database and visualized using Cytoscape v3.9.1 software. Gene Ontology (GO) analysis of the ten core targets from the PPI network revealed that A. cepa bioactive compounds could be involved in regulating biological processes such as response to oxygen-containing compounds and response to inflammation while Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis revealed that A. cepa compounds might modulate pathways including AGE-RAGE signaling pathway, interleukin (IL)-17 signalling pathway, and tumor necrosis factor signaling pathway. Molecular docking analysis showed that 1-O-(4-Coumaroyl)-beta-D-glucose, stigmasterol, campesterol, and diosgenin have high binding affinities for core targets including EGFR, ALB, MMP9, CASP3, and CCL5. This study successfully elucidated the potential anti-inflammatory mechanism of A. cepa bioactive compounds, hence, providing new insights into the development of alternative anti-inflammatory drugs.

2.
J Genet Eng Biotechnol ; 21(1): 47, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099169

RESUMO

BACKGROUND: Prostate cancer (PC) is a silent but potent killer among men. In 2018, PC accounted for more than 350, 000 death cases while more than 1.2 million cases were diagnosed. Docetaxel, a chemotherapeutic drug belonging to the taxane family of drugs, is one of the most potent drugs in combating advanced PC. However, PC cells often evolve resistance against the regimen. Hence, necessitating the search for complementary and alternative therapies. Quercetin, a ubiquitous phytocompound with numerous pharmacological properties, has been reported to reverse docetaxel resistance (DR) in docetaxel-resistant prostate cancer (DRPC). Therefore, this study aimed to explore the mechanism via which quercetin reverses DR in DRPC using an integrative functional network and exploratory cancer genomic data analyses. RESULTS: The putative targets of quercetin were retrieved from relevant databases, while the differentially expressed genes (DEGs) in docetaxel-resistant prostate cancer (DRPC) were identified by analysing microarray data retrieved from the Gene Expression Omnibus (GEO) database. Subsequently, the protein-protein interaction (PPI) network of the overlapping genes between the DEGs and quercetin targets was retrieved from STRING, while the hub genes, which represent the key interacting genes of the network, were identified using the CytoHubba plug-in of Cytoscape. The hub genes were further subjected to a comprehensive analysis aimed at identifying their contribution to the immune microenvironment and overall survival (OS) of PC patients, while their alterations in PC patients were also revealed. The biological roles played by the hub genes in chemotherapeutic resistance include the positive regulation of developmental process, positive regulation of gene expression, negative regulation of cell death, and epithelial cell differentiation among others. CONCLUSION: Further analysis revealed epidermal growth factor receptor (EGFR) as the most pertinent target of quercetin in reversing DR in DRPC, while molecular docking simulation revealed an effective interaction between quercetin and EGFR. Ultimately, this study provides a scientific rationale for the further exploration of quercetin as a combinational therapy with docetaxel.

3.
J Genet Eng Biotechnol ; 21(1): 172, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133697

RESUMO

BACKGROUND: The contribution of the processes involved and waste generated during gold mining to the increment of heavy metals concentration in the environment has been well established. While certain heavy metals are required for the normal functioning of an organism, certain heavy metals have been identified for their deleterious effects on the ecosystem and non-physiological roles in organisms. Hence, efforts aimed at reducing their concentration level are crucial. To this end, soil and water samples were collected from Ilesha gold mining, Osun State, Nigeria, and they were subjected to various analyses aimed at evaluating their various physicochemical parameters, heavy metal concentration, heavy metal-resistant bacteria isolation, and other analyses which culminated in the molecular characterization of heavy metal-resistant bacteria. RESULTS: Notably, the results obtained from this study revealed that the concentration of heavy metal in the water samples around the mining site was in the order Co > Zn > Cd > Pb > Hg while that of the soil samples was in the order Co > Cd > Pb > Hg > Zn. A minimum inhibitory concentration test performed on the bacteria isolates from the samples revealed some of the isolates could resist as high as 800 ppm of Co, Cd, and Zn, 400 ppm, and 100 ppm of Pb and Hg respectively. Molecular characterization of the isolates revealed them as Priestia aryabhattai and Enterobacter cloacae. CONCLUSION: Further analysis revealed the presence of heavy metal-resistant genes (HMRGs) including merA, cnrA, and pocC in the isolated Enterobacter cloacae. Ultimately, the bacteria identified in this study are good candidates for bioremediation and merit further investigation in efforts to bioremediate heavy metals in gold mining sites.

4.
Vaccines (Basel) ; 10(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36298463

RESUMO

Leishmaniasis is a neglected tropical disease caused by parasitic intracellular protozoa of the genus Leishmania. The visceral form of this disease caused by Leishmania donovani continues to constitute a major public health crisis, especially in countries of endemicity. In some cases, it is asymptomatic and comes with acute and chronic clinical outcomes such as weight loss, pancytopenia, hepatosplenomegaly, and death if left untreated. Over the years, the treatment of VL has relied solely on chemotherapeutic agents, but unfortunately, these drugs are now faced with challenges. Despite all efforts, no successful vaccine has been approved for VL. This could be as a result of limited knowledge/understanding of the immune mechanisms necessary to regulate parasite growth. Using a computational approach, this study explored the prospect of harnessing the properties of a disulfide isomerase protein of L. donovani amastigotses to develop a multi-epitope subunit vaccine candidate against the parasite. We designed a 248-amino acid multi-epitope vaccine with a predicted antigenicity probability of 0.897372. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was stable, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against Leishmania spp. Parasites.

5.
In Silico Pharmacol ; 9(1): 8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425647

RESUMO

The widespread of coronavirus (COVID-19) is a new global health crisis that poses a threat to the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in bats and was discovered first in Wuhan, Hubei province, China in December 2019. Immunoinformatics and bioinformatics tools were employed for the construction of a multi-epitope subunit vaccine to prevent the diseases. The antigenicity, toxicity and allergenicity of all epitopes used in the construction of the vaccine were predicted and then conjugated with adjuvants and linkers. Vaccine Toll-Like Receptors (2, 3, 4, 8 and 9) complex was also evaluated. The vaccine construct was antigenic, non-toxic and non-allergic, which indicates the vaccines ability to induce antibodies in the host, making it an effective vaccine candidate. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-020-00062-x.

6.
PLoS Negl Trop Dis ; 11(11): e0006045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29117212

RESUMO

BACKGROUND: Schistosomiasis is a chronic neglected tropical disease that is characterized by continued inflammatory challenges to the exposed population and it has been established as a possible risk factor in the aetiology of bladder cancer. Improved diagnosis of schistosomiasis and its associated pathology is possible through mass spectrometry to identify biomarkers among the infected population, which will influence early detection of the disease and its subtle morbidity. METHODOLOGY: A high-throughput proteomic approach was used to analyse human urine samples for 49 volunteers from Eggua, a schistosomiasis endemic community in South-West, Nigeria. The individuals were previously screened for Schistosoma haematobium and structural bladder pathologies via microscopy and ultrasonography respectively. Samples were categorised into schistosomiasis, schistosomiasis with bladder pathology, bladder pathology, and a normal healthy control group. These samples were analysed to identify potential protein biomarkers. RESULTS: A total of 1306 proteins and 9701 unique peptides were observed in this study (FDR = 0.01). Fifty-four human proteins were found to be potential biomarkers for schistosomiasis and bladder pathologies due to schistosomiasis by label-free quantitative comparison between groups. Thirty-six (36) parasite-derived potential biomarkers were also identified, which include some existing putative schistosomiasis biomarkers that have been previously reported. Some of these proteins include Elongation factor 1 alpha, phosphopyruvate hydratase, histone H4 and heat shock proteins (HSP 60, HSP 70). CONCLUSION: These findings provide an in-depth analysis of potential schistosoma and human host protein biomarkers for diagnosis of chronic schistosomiasis caused by Schistosoma haematobium and its pathogenesis.


Assuntos
Biomarcadores/análise , Proteoma/análise , Esquistossomose/diagnóstico , Esquistossomose/patologia , Urina/química , Animais , Feminino , Humanos , Masculino , Espectrometria de Massas , Nigéria , Proteínas , Proteômica , Schistosoma haematobium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA