RESUMO
Coronavirus disease 2019 (COVID-19) is an infectious respiratory condition sustained by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which manifests prevalently as mild to moderate respiratory tract infection. Nevertheless, in a number of cases the clinical course may deteriorate, with onset of end organ injury, systemic dysfunction, thrombosis and ischemia. Given the clinical picture, baseline assessment and serial monitoring of blood lactate concentration may be conceivably useful in COVID-19. We hence performed a systematic literature review to explore the possible association between increased blood lactate levels, disease severity and mortality in COVID-19 patients, including comparison of lactate values between COVID-19 and non-COVID-19 patients. We carried out an electronic search in Medline and Scopus, using the keywords "COVID-19" OR "SARS-CoV-2" AND "lactate" OR "lactic acid" OR "hyperlactatemia", between 2019 and present time (i.e. October 10, 2021), which allowed to identify 19 studies, totalling 6,459 patients. Overall, we found that COVID-19 patients with worse outcome tend to display higher lactate values than those with better outcome, although most COVID-19 patients in the studies included in our analysis did not have sustained baseline hyperlactatemia. Substantially elevated lactate values were neither consistently present in all COVID-19 patients who developed unfavourable clinical outcomes. These findings suggest that blood lactate monitoring upon admission and throughout hospitalization may be useful for early identification of higher risk of unfavourable COVID-19 illness progression, though therapeutic decisions based on using conventional hyperlactatemia cut-off values (i.e., 2.0 mmol/L) upon first evaluation may be inappropriate in patients with SARS-CoV-2 infection.
Assuntos
COVID-19 , Hiperlactatemia , Ácido Láctico/sangue , COVID-19/sangue , Hospitalização , Humanos , Hiperlactatemia/virologia , SARS-CoV-2RESUMO
Severe acute respiratory syndrome coronavirus 2 has spread rapidly throughout the world, becoming an overwhelming global health emergency. The array of injuries caused by this virus is broad and not limited to the respiratory system, but encompassing also extensive endothelial and systemic tissue damage. Since statins effectively improve endothelial function, these drugs may have beneficial effects in patients with coronavirus disease 2019 (COVID-19). Therefore, this investigation aimed to provide an updated overview on the interplay between statins and COVID-19, with particular focus on their potentially protective role against progression toward severe or critical illness and death. A systematic electronic search was performed in Scopus and PubMed up to present time. Data on statins use and COVID-19 outcomes especially in studies performed in Europe and North America were extracted and pooled. A total of seven studies met our inclusion criteria, totaling 2,398 patients (1,075 taking statins, i.e., 44.8%). Overall, statin usage in Western patients hospitalized with COVID-19 was associated with nearly 40% lower odds of progressing toward severe illness or death (odds ratio: 0.59; 95% confidence interval: 0.35-0.99). After excluding studies in which statin therapy was started during hospital admission, the beneficial effect of these drugs was magnified (odds ratio: 0.51; 95% confidence interval: 0.41-0.64). In conclusion, although randomized trials would be necessary to confirm these preliminary findings, current evidence would support a favorable effect of statins as adjuvant therapy in patients with COVID-19. Irrespective of these considerations, suspension of statin therapy seems highly unadvisable in COVID-19 patients.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/mortalidade , Hospitalização , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , SARS-CoV-2 , Europa (Continente)/epidemiologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Estados Unidos/epidemiologiaRESUMO
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100ß-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Assuntos
Astrócitos , Isolamento Social , Animais , Comportamento Animal , Corticosterona , Depressão , Modelos Animais de Doenças , Hipocampo , Masculino , Camundongos , Microglia , Neurogênese , Estresse PsicológicoRESUMO
The worldwide spread of coronavirus disease 2019 (COVID-19) has generated a global health crisis and more than a million deaths so far. Epidemiological and clinical characteristics of COVID-19 are increasingly reported, along with its potential relationship with overweight and/or obesity. Therefore, we aim here to review the current scientific literature on the impact of overweight and/or obesity among hospitalized patients who have developed severe or critical forms of COVID-19. Following PRISMA guidelines, our literature search identified over 300 scientific articles using the keywords "obesity" and "COVID-19", 22 of which were finally selected for reporting useful information on the association between overweight/obesity and disease severity. In particular, in 11 out of the 14 studies (79%) which evaluated the association between obesity and disease severity providing also a risk estimate (i.e., the odd ratio; OR), the OR value was constantly >2. Although the studies were found to be heterogeneous in terms of design, population, sample size and endpoints, in most cases a significant association was found between obesity and the risk of progressing to severe COVID-19 illness, intensive care unit admission and/or death. We can hence conclude that an increased body mass index shall be considered a negative prognostic factor in patients with COVID-19, and more aggressive prevention or treatment shall hence be reserved to overweight and/or obese patients.
Assuntos
COVID-19/terapia , Obesidade/epidemiologia , COVID-19/epidemiologia , Humanos , Prognóstico , Índice de Gravidade de DoençaRESUMO
Objectives: Innovative Cell Population Data (CPD) have been used as early biomarkers for diagnosing sepsis in adults. We assessed the usefulness of CPD in pediatric patients with sepsis/septic shock, in terms of early recognition and outcome prediction. We revised 54 patients (0-15 y) admitted to our Pediatric Intensive Care Unit (PICU) for sepsis/septic shock during a 4-year period. Twenty-eight patients were excluded, 26 septic patients were enrolled (G1). Forty children admitted for elective surgery served as controls (G2). Data on five selected CPD parameters, namely neutrophils fluorescence intensity (NE-SFL), monocytes cells complexity (MO-X), monocytes fluorescence intensity (MO-Y), monocytes complexity and width of dispersion of events measured (MO-WX), and monocytes cells size and width dispersion (MO-WZ), were obtained at time of PICU admission (t0) by a hematological analyzer (Sysmex XN 9000®). As the primary outcome we evaluated the relevance of CPD for diagnosing sepsis/septic shock on PICU admission. Furthermore, we investigated if CPD at t0 were correlated with C-reactive protein (CRP), patient survival, or complicated sepsis course. Results: On PICU admission (t0), NE-SFL, MO-WX, and MO-Y were higher in sepsis/septic shock patients compared to controls. NE-SFL values were correlated with CRP values in G1 patients (r = 0.83). None of the five CPD parameters was correlated with survival or complicated sepsis course. Conclusion: We found higher values of NE-SFL, MO-WX, and MO-Y in children with sepsis/septic shock upon PICU admission. These parameters may be a promising adjunct for early sepsis diagnosis in pediatric populations. Larger, prospective studies are needed to confirm our preliminary observations.
RESUMO
Chronic stress can alter the immune system, adult hippocampal neurogenesis and induce anxiety- and depressive-like behaviour in rodents. However, previous studies have not discriminated between the effect(s) of different types of stress on these behavioural and biological outcomes. We investigated the effect(s) of repeated injection vs. permanent social isolation on behaviour, stress responsivity, immune system functioning and hippocampal neurogenesis, in young adult male mice, and found that the type of stress exposure does indeed matter. Exposure to 6 weeks of repeated injection resulted in an anxiety-like phenotype, decreased systemic inflammation (i.e., reduced plasma levels of TNFα and IL4), increased corticosterone reactivity, increased microglial activation and decreased neuronal differentiation in the dentate gyrus (DG). In contrast, exposure to 6 weeks of permanent social isolation resulted in a depressive-like phenotype, increased plasma levels of TNFα, decreased plasma levels of IL10 and VEGF, decreased corticosterone reactivity, decreased microglial cell density and increased cell density for radial glia, s100ß-positive cells and mature neuroblasts-all in the DG. Interestingly, combining the two distinct stress paradigms did not have an additive effect on behavioural and biological outcomes, but resulted in yet a different phenotype, characterized by increased anxiety-like behaviour, decreased plasma levels of IL1ß, IL4 and VEGF, and decreased hippocampal neuronal differentiation, without altered neuroinflammation or corticosterone reactivity. These findings demonstrate that different forms of chronic stress can differentially alter both behavioural and biological outcomes in young adult male mice, and that combining multiple stressors may not necessarily cause more severe pathological outcomes.