Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(9): 2341-2358, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29378861

RESUMO

Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV-Grn) to deliver progranulin in Grn-/- mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV-Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV-Grn reduced lipofuscinosis in several brain regions of Grn-/- mice. AAV-Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV-Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV-Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn-/- mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations.SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin (GRN) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal ceroid lipofuscinosis (NCL). Here, we address several mechanistic questions about the potential of progranulin gene therapy for these disorders. GRN mutation carriers with NCL or FTD exhibit lipofuscinosis and Grn-/- mouse models develop a similar pathology. AAV-mediated progranulin delivery reduced lipofuscinosis in Grn-/- mice even after the onset of pathology. AAV delivered progranulin only to neurons, not microglia, but improved microgliosis in several brain regions, indicating cross talk between neuronal and microglial pathology. Its beneficial effects were sortilin independent. AAV-derived progranulin was delivered to lysosomes and corrected lysosomal abnormalities. These data provide in vivo support for the efficacy of progranulin-boosting therapies for FTD and NCL.


Assuntos
Encéfalo/patologia , Demência Frontotemporal/patologia , Lisossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Progranulinas/administração & dosagem , Animais , Feminino , Terapia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Progranulinas/genética
2.
Neurobiol Dis ; 124: 152-162, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30448285

RESUMO

Loss-of-function mutations in progranulin (GRN), most of which cause progranulin haploinsufficiency, are a major autosomal dominant cause of frontotemporal dementia (FTD). Individuals with loss-of-function mutations on both GRN alleles develop neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Progranulin is a secreted glycoprotein expressed by a variety of cell types throughout the body, including neurons and microglia in the brain. Understanding the relative importance of neuronal and microglial progranulin insufficiency in FTD pathogenesis may guide development of therapies. In this study, we used mouse models to investigate the role of neuronal and microglial progranulin insufficiency in the development of FTD-like pathology and behavioral deficits. Grn-/- mice model aspects of FTD and NCL, developing lipofuscinosis and gliosis throughout the brain, as well as deficits in social behavior. We have previously shown that selective depletion of neuronal progranulin disrupts social behavior, but does not produce lipofuscinosis or gliosis. We hypothesized that reduction of microglial progranulin would induce lipofuscinosis and gliosis, and exacerbate behavioral deficits, in neuronal progranulin-deficient mice. To test this hypothesis, we crossed Grnfl/fl mice with mice expressing Cre transgenes targeting neurons (CaMKII-Cre) and myeloid cells/microglia (LysM-Cre). CaMKII-Cre, which is expressed in forebrain excitatory neurons, reduced cortical progranulin protein levels by around 50%. LysM-Cre strongly reduced progranulin immunolabeling in many microglia, but did not reduce total brain progranulin levels, suggesting that, at least under resting conditions, microglia contribute less than neurons to overall brain progranulin levels. Mice with depletion of both neuronal and microglial progranulin failed to develop lipofuscinosis or gliosis, suggesting that progranulin from extracellular sources prevented pathology in cells targeted by the Cre transgenes. Reduction of microglial progranulin also did not exacerbate the social deficits of neuronal progranulin-insufficient mice. These results do not support the hypothesis of synergistic effects between progranulin-deficient neurons and microglia. Nearly complete progranulin deficiency appears to be required to induce lipofuscinosis and gliosis in mice, while partial progranulin insufficiency is sufficient to produce behavioral deficits.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Microglia/metabolismo , Neurônios/metabolismo , Progranulinas/metabolismo , Animais , Comportamento Animal , Feminino , Demência Frontotemporal , Gliose/metabolismo , Lipofuscina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Progranulinas/genética , Comportamento Social
3.
Elife ; 62017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28135190

RESUMO

Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit.


Neurogenesis, the creation of new brain cells called neurons, occurs primarily before birth. However, a region of the brain called the dentate gyrus, which is involved in memory, continues to produce new neurons throughout life. Recent studies suggest that adding neurons to the dentate gyrus helps the brain to distinguish between similar sights, sounds and smells. This in turn makes it easier to encode similar experiences as distinct memories. The brain's outer layer, called the cortex, processes information from our senses and sends it, along with information about our location in space, to the dentate gyrus. By combining this sensory and spatial information, the dentate gyrus is able to generate a unique memory of an experience. But how does neurogenesis affect this process? As the dentate gyrus accumulates more neurons, the number of neurons in the cortex remains unchanged. Do some cortical neurons transfer their connections ­ called synapses ­ to the new neurons? Or does the brain generate additional synapses to accommodate the newborn cells? Adlaf et al. set out to answer this question by genetically modifying mice to alter the number of new neurons that could form in the dentate gyrus. Increasing the number of newborn neurons reduced the number of synapses between the cortex and the mature neurons in the dentate gyrus. Conversely, killing off newborn neurons had the opposite effect, increasing the strength of the synaptic connections to older cells. This suggests that new synapses are not formed to accommodate new neurons, but rather that there is a redistribution of synapses between old and new neurons in the dentate gyrus. Further work is required to determine how this redistribution of synapses contributes to how the dentate gyrus works. Does redistributing synapses disrupt existing memories? And how do these findings relate to the effects of exercise ­ does this natural way of increasing neurogenesis increase the overall number of synapses in the system, potentially creating enough connections for both new and old neurons?


Assuntos
Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores , Rede Nervosa/fisiologia , Neurogênese , Neurônios/fisiologia , Transmissão Sináptica , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA