Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biochim Biophys Acta ; 1861(8 Pt B): 806-811, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26902513

RESUMO

Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Assuntos
Membrana Celular/fisiologia , Microdomínios da Membrana/fisiologia , Potenciais da Membrana/fisiologia , Animais , Membrana Celular/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo
2.
Eukaryot Cell ; 9(8): 1184-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581291

RESUMO

The plasma membrane of the yeast Saccharomyces cerevisiae contains stably distributed lateral domains of specific composition and structure, termed MCC (membrane compartment of arginine permease Can1). Accumulation of Can1 and other specific proton symporters within MCC is known to regulate the turnover of these transporters and is controlled by the presence of another MCC protein, Nce102. We show that in an NCE102 deletion strain the function of Nce102 in directing the specific permeases into MCC can be complemented by overexpression of the NCE102 close homolog FHN1 (the previously uncharacterized YGR131W) as well as by distant Schizosaccharomyces pombe homolog fhn1 (SPBC1685.13). We conclude that this mechanism of plasma membrane organization is conserved through the phylum Ascomycota. We used a hemagglutinin (HA)/Suc2/His4C reporter to determine the membrane topology of Nce102. In contrast to predictions, its N and C termini are oriented toward the cytosol. Deletion of the C terminus or even of its last 6 amino acids does not disturb protein trafficking, but it seriously affects the formation of MCC. We show that the C-terminal part of the Nce102 protein is necessary for localization of both Nce102 itself and Can1 to MCC and also for the formation of furrow-like membrane invaginations, the characteristic ultrastructural feature of MCC domains.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Microdomínios da Membrana/ultraestrutura , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
3.
Yeast ; 27(8): 473-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20641012

RESUMO

The plasma membrane of Saccharomyces cerevisiae contains large microdomains enriched in ergosterol, which house at least nine integral proteins, including proton symporters. The domains adopt a characteristic structure of furrow-like invaginations typically seen in freeze-fracture pictures of fungal cells. Being stable for the time comparable with the cell cycle duration, they might be considered as fixed islands (rafts) in an otherwise fluid yeast plasma membrane. Rapidly moving endocytic marker proteins avoid the microdomains; the domain-accumulated proton symporters consequently show a reduced rate of substrate-induced endocytosis and turnover.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membrana Celular/ultraestrutura , Microdomínios da Membrana/ultraestrutura , Microscopia Confocal , Modelos Biológicos , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Biol Cell ; 14(11): 4427-36, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14551254

RESUMO

Different distribution patterns of the arginine/H+ symporter Can1p, the H+ plasma membrane ATPase Pma1p, and the hexose transport facilitator Hxt1p within the plasma membrane of living Saccharomyces cerevisiae cells were visualized using fluorescence protein tagging of these proteins. Although Hxt1p-GFP was evenly distributed through the whole cell surface, Can1p-GFP and Pma1p-GFP were confined to characteristic subregions in the plasma membrane. Pma1p is a well-documented raft protein. Evidence is presented that Can1p, but not Hxt1p, is exclusively associated with lipid rafts, too. Double labeling experiments with Can1p-GFP- and Pma1p-RFP-containing cells demonstrate that these proteins occupy two different nonoverlapping membrane microdomains. The size of Can1p-rich (Pma1p-poor) areas was estimated to 300 nm. These domains were shown to be stable in growing cells for >30 min. To our knowledge, this is the first observation of a cell polarization-independent lateral compartmentation in the plasma membrane of a living cell.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Proteínas Recombinantes de Fusão/metabolismo
6.
Eur J Cell Biol ; 96(6): 591-599, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28501103

RESUMO

We describe a novel mechanism of mRNA decay regulation, which takes place under the conditions of glucose deprivation in the yeast Saccharomyces cerevisiae. The regulation is based on temporally stable sequestration of the main 5'-3' mRNA exoribonuclease Xrn1 at the eisosome, a plasma membrane-associated protein complex organizing a specialized membrane microdomain. As documented by monitoring the decay of a specific mRNA substrate in time, Xrn1-mediated mRNA degradation ceases during the accumulation of Xrn1 at eisosome, but the eisosome-associated Xrn1 retains its functionality and can be re-activated when released to cytoplasm following the addition of glucose. In cells lacking the eisosome organizer Pil1, Xrn1 does not associate with the plasma membrane and its activity is preserved till the stationary phase. Thus, properly assembled eisosome is necessary for this kind of Xrn1 regulation, which occurs in a liquid culture as well as in a differentiated colony.


Assuntos
Citoplasma/metabolismo , Exorribonucleases/genética , Fosfoproteínas/genética , Estabilidade de RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/genética , Exorribonucleases/metabolismo , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta ; 1711(1): 87-95, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15904666

RESUMO

A considerable amount of evidence supports the idea that lipid rafts are involved in many cellular processes, including protein sorting and trafficking. We show that, in this process, also a non-raft lipid, phosphatidylethanolamine (PE), has an indispensable function. The depletion of this phospholipid results in an accumulation of a typical raft-resident, the arginine transporter Can1p, in the membranes of Golgi, while the trafficking of another plasma membrane transporter, Pma1p, is interrupted at the level of the ER. Both these transporters associate with a Triton (TX-100) resistant membrane fraction before their intracellular transport is arrested in the respective organelles. The Can1p undelivered to the plasma membrane is fully active when reconstituted to a PE-containing vesicle system in vitro. We further demonstrate that, in addition to the TX-100 resistance at 4 degrees C, Can1p and Pma1pa exhibit different accessibility to nonyl glucoside (NG), which points to distinct intimate lipid surroundings of these two proteins. Also, at 20 degrees C, these two proteins are extracted by TX-100 differentially. The features above suggest that Pma1p and Can1p are associated with different compartments. This is independently supported by the observations made by confocal microscopy. In addition we show that PE is involved in the stability of Can1p-raft association.


Assuntos
Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/isolamento & purificação , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Detergentes , Microdomínios da Membrana/química , Proteínas de Membrana/química , Fosfatidiletanolaminas/química , Dobramento de Proteína , ATPases Translocadoras de Prótons/isolamento & purificação , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biochim Biophys Acta ; 1564(1): 9-13, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12100990

RESUMO

In continuation of our previous study, we show that phosphatidyl ethanolamine (PE) depletion affects, in addition to amino acid transporters, activities of at least two other proton motive force (pmf)-driven transporters (Ura4p and Mal6p). For Can1p, we demonstrate that the lack of PE results in a failure of the permease targeting to plasma membrane. Despite the pleiotropic effect of PE depletion, a specific role of PE in secretion of a defined group of permeases can be distinguished. Pmf-driven transporters are more sensitive to the lack of PE than other plasma membrane proteins.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo , Proteínas Fúngicas/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Facilitadoras de Transporte de Glucose , Manosiltransferases , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Força Próton-Motriz , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular
9.
Eur J Cell Biol ; 94(1): 1-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25457676

RESUMO

Eisosomes are plasma membrane-associated protein complexes organizing the membrane compartment of Can1 (MCC), a membrane microdomain of specific structure and function in ascomycetous fungi. By heterologous expression of specific components of Schizosaccharomyces pombe eisosomes in Saccharomyces cerevisiae we reconstitute structures exhibiting the composition and morphology of S. pombe eisosome in the host plasma membrane. We show S. pombe protein Pil1 (SpPil1) to substitute the function of its S. cerevisiae homologue in building plasma membrane-associated assemblies recognized by inherent MCC/eisosome constituents Sur7 and Seg1. Our data indicate that binding of SpPil1 to the plasma membrane of S. cerevisiae also induces formation of furrow-like invaginations characteristic for MCC. To the best of our knowledge, this is the first report of interspecies transfer of a functional plasma membrane microdomain. In the described system, we identify a striking difference between eisosome stabilizer proteins Seg1 and SpSle1. While Seg1 recruits both Pil1 and SpPil1 to the plasma membrane, SpSle1 recognizes only its natural counterpart, SpPil1. In the presence of Pil1, SpSle1 is segregated outside the Pil1-organized eisosomes and forms independent microdomains in the host membrane.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Fosfoproteínas/metabolismo
10.
PLoS One ; 10(3): e0122770, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811606

RESUMO

Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC) - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies), or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.


Assuntos
Membrana Celular/metabolismo , Exorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Exorribonucleases/genética , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Resposta ao Choque Térmico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
FEBS J ; 282(3): 419-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410771

RESUMO

We report the transmembrane voltage-induced lateral reorganization of highly-ordered lipid microdomains in the plasma membrane of living Saccharomyces cerevisiae. Using trans-parinaric acid (all-trans-9,11,13,15-octadecatetraenoic acid) as a probe of lipid order and different methods of membrane depolarization, we found that depolarization always invokes a significant reduction in the amount of gel-like microdomains in the membrane. Different depolarization mechanisms, including the application of ionophores, cell depolarization by an external electric field, depolarization by proton/hexose co-transport facilitated by HUP1 protein and a reduction of membrane potential caused by compromised respiration efficiency, yielded the same results independently of the yeast strain used. The data suggest that the voltage-induced reorganization of lateral membrane structure could play significant role in fast cellular response to acute stress conditions, as well as in other membrane microdomain-related regulatory mechanisms.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Potenciais da Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Annu Rev Plant Biol ; 64: 501-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638827

RESUMO

The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.


Assuntos
Membrana Celular/metabolismo , Fungos/metabolismo , Microdomínios da Membrana/metabolismo , Plantas/metabolismo , Transporte Biológico , Membrana Celular/química , Detergentes , Fungos/química , Microdomínios da Membrana/química , Células Vegetais/química , Células Vegetais/metabolismo , Plantas/química
13.
PLoS One ; 7(4): e35132, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496901

RESUMO

In many eukaryotes, a significant part of the plasma membrane is closely associated with the dynamic meshwork of cortical endoplasmic reticulum (cortical ER). We mapped temporal variations in the local coverage of the yeast plasma membrane with cortical ER pattern and identified micron-sized plasma membrane domains clearly different in cortical ER persistence. We show that clathrin-mediated endocytosis is initiated outside the cortical ER-covered plasma membrane zones. These cortical ER-covered zones are highly dynamic but do not overlap with the immobile and also endocytosis-inactive membrane compartment of Can1 (MCC) and the subjacent eisosomes. The eisosomal component Pil1 is shown to regulate the distribution of cortical ER and thus the accessibility of the plasma membrane for endocytosis.


Assuntos
Membrana Celular/fisiologia , Endocitose , Retículo Endoplasmático/fisiologia , Saccharomyces cerevisiae/fisiologia , Clatrina/fisiologia , Fosfoproteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
14.
J Cell Biol ; 183(6): 1075-88, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19064668

RESUMO

In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.


Assuntos
Proteínas de Transporte/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Genes Essenciais , Genoma Fúngico/genética , Proteínas de Fluorescência Verde/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Octoxinol/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
15.
EMBO J ; 26(1): 1-8, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17170709

RESUMO

The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/química , Potenciais da Membrana , Proteínas de Membrana/química , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Membrana Celular/química , Detergentes/farmacologia , Ergosterol/farmacologia , Genes Fúngicos , Microdomínios da Membrana/química , Proteínas de Membrana/metabolismo , Prótons , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/química
16.
Eukaryot Cell ; 5(6): 945-53, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16757742

RESUMO

The hexose-proton symporter HUP1 shows a spotty distribution in the plasma membrane of the green alga Chlorella kessleri. Chlorella cannot be transformed so far. To study the membrane localization of the HUP1 protein in detail, the symporter was fused to green fluorescent protein (GFP) and heterologously expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. In these organisms, the HUP1 protein has previously been shown to be fully active. The GFP fusion protein was exclusively targeted to the plasma membranes of both types of fungal cells. In S. cerevisiae, it was distributed nonhomogenously and concentrated in spots resembling the patchy appearance observed previously for endogenous H(+) symporters. It is documented that the Chlorella protein colocalizes with yeast proteins that are concentrated in 300-nm raft-based membrane compartments. On the other hand, it is completely excluded from the raft compartment housing the yeast H(+)/ATPase. As judged by their solubilities in Triton X-100, the HUP1 protein extracted from Chlorella and the GFP fusion protein extracted from S. cerevisiae are detergent-resistant raft proteins. S. cerevisiae mutants lacking the typical raft lipids ergosterol and sphingolipids showed a homogenous distribution of HUP1-GFP within the plasma membrane. In an ergosterol synthesis (erg6) mutant, the rate of glucose uptake was reduced to less than one-third that of corresponding wild-type cells. In S. pombe, the sterol-rich plasma membrane domains can be stained in vivo with filipin. Chlorella HUP1-GFP accumulated exactly in these domains. Altogether, it is demonstrated here that a plant membrane protein has the property of being concentrated in specific raft-based membrane compartments and that the information for its raft association is retained between even distantly related organisms.


Assuntos
Proteínas de Algas/metabolismo , Chlorella/química , Microdomínios da Membrana/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Chlorella/citologia , Detergentes , Ergosterol/metabolismo , Lipídeos de Membrana/química , Proteínas de Transporte de Monossacarídeos/análise , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Schizosaccharomyces/citologia , Esfingolipídeos/metabolismo , Simportadores/análise
17.
J Cell Sci ; 117(Pt 25): 6031-41, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15536122

RESUMO

Recently, lipid-raft-based subdomains within the plasma membrane of living Saccharomyces cerevisiae cells were visualized using green fluorescent protein fusions, and non-overlapping subdomains containing either Pma1p or Can1p were distinguished. In this study, the long-term stability of the subdomains was investigated. Experiments with latrunculin A and nocodazole ruled out the involvement of cytoskeletal components in the stabilization of the subdomains. Also a putative role of the cell wall was excluded, because protoplasting of the cells changed neither the pattern nor the stability of the subdomains. By contrast, the expected inner dynamics of the membrane subdomains was documented by FRAP experiments. Finally, two other proteins were localized within the frame of the Can1p/Pma1p plasma-membrane partition. We show that Fur4p (another H+ symporter) and Sur7p (a protein of unknown function) occupy the Can1p subdomain.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/química , Actinas/metabolismo , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Parede Celular/metabolismo , Cromossomos/metabolismo , Clonagem Molecular , Citoesqueleto/metabolismo , DNA/metabolismo , Detergentes/farmacologia , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Toxinas Marinhas/farmacologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Nocodazol/farmacologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Octoxinol/farmacologia , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Tiazóis/farmacologia , Tiazolidinas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA