Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(9): 1597-1613, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419868

RESUMO

Ecosystems function in a series of feedback loops that can change or maintain vegetation structure. Vegetation structure influences the ecological niche space available to animals, shaping many aspects of behaviour and reproduction. In turn, animals perform ecological functions that shape vegetation structure. However, most studies concerning three-dimensional vegetation structure and animal ecology consider only a single direction of this relationship. Here, we review these separate lines of research and integrate them into a unified concept that describes a feedback mechanism. We also show how remote sensing and animal tracking technologies are now available at the global scale to describe feedback loops and their consequences for ecosystem functioning. An improved understanding of how animals interact with vegetation structure in feedback loops is needed to conserve ecosystems that face major disruptions in response to climate and land-use change.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Animais , Retroalimentação , Ecologia , Clima , Mudança Climática
2.
New Phytol ; 237(1): 22-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239086

RESUMO

Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.


Assuntos
Ecossistema , Florestas , Árvores , Folhas de Planta , Microclima
3.
Proc Natl Acad Sci U S A ; 117(14): 7863-7870, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229568

RESUMO

Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.


Assuntos
Carbono/metabolismo , Conservação dos Recursos Naturais , Ecossistema , Clima Tropical , Agricultura/tendências , Biomassa , Bornéu , Florestas , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Árvores
4.
Glob Chang Biol ; 21(1): 345-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044917

RESUMO

Indonesia has experienced rapid land use change over the last few decades as forests and peatswamps have been cleared for more intensively managed land uses, including oil palm and timber plantations. Fires are the predominant method of clearing and managing land for more intensive uses, and the related emissions affect public health by contributing to regional particulate matter and ozone concentrations and adding to global atmospheric carbon dioxide concentrations. Here, we examine emissions from fires associated with land use clearing and land management on the Indonesian island of Sumatra and the sensitivity of this fire activity to interannual meteorological variability. We find ~80% of 2005-2009 Sumatra emissions are associated with degradation or land use maintenance instead of immediate land use conversion, especially in dry years. We estimate Sumatra fire emissions from land use change and maintenance for the next two decades with five scenarios of land use change, the Global Fire Emissions Database Version 3, detailed 1-km2 land use change maps, and MODIS fire radiative power observations. Despite comprising only 16% of the original study area, we predict that 37-48% of future Sumatra emissions from land use change will occur in fuel-rich peatswamps unless this land cover type is protected effectively. This result means that the impact of fires on future air quality and climate in Equatorial Asia will be decided in part by the conservation status given to the remaining peatswamps on Sumatra. Results from this article will be implemented in an atmospheric transport model to quantify the public health impacts from the transport of fire emissions associated with future land use scenarios in Sumatra.


Assuntos
Agricultura/estatística & dados numéricos , Poluentes Atmosféricos/análise , Meio Ambiente , Incêndios/estatística & dados numéricos , Modelos Teóricos , Agricultura/métodos , Agricultura/tendências , Previsões , Indonésia
5.
Nat Commun ; 10(1): 114, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631076

RESUMO

Oil palm expansion resulted in 2 million hectares (Mha) of forest loss globally in 2000-2010. Despite accounting for 24% (4.5 Mha) of the world's total oil palm cultivated area, expansion dynamics in sub-Saharan Africa have been overlooked. We show that in Southwest Cameroon, a top producing region of Africa, 67% of oil palm expansion from 2000-2015 occurred at the expense of forest. Contrary to the publicized narrative of industrial-scale expansion, most oil palm expansion and associated deforestation is occurring outside large agro-industrial concessions. Expansion and deforestation carried out by non-industrial producers is occurring near low-efficiency informal mills, unconstrained by the location of high-efficiency company-owned mills. These results highlight the key role of a booming informal economic sector in driving rapid land use change. High per capita consumption and rising palm oil demands in sub-Saharan Africa spotlight the need to consider informal economies when identifying regionally relevant sustainability pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA