Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Biol Chem ; 297(3): 101078, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400169

RESUMO

Bacteria require a precise balance of copper ions to ensure that essential cuproproteins are fully metalated while also avoiding copper-induced toxicity. The Gram-positive bacterium Bacillus subtilis maintains appropriate copper homeostasis in part through the ycn operon. The ycn operon comprises genes encoding three proteins: the putative copper importer YcnJ, the copper-dependent transcriptional repressor YcnK, and the uncharacterized Domain of Unknown Function 1775 (DUF1775) containing YcnI. DUF1775 domains are found across bacterial phylogeny, and bioinformatics analyses indicate that they frequently neighbor domains implicated in copper homeostasis and transport. Here, we investigated whether YcnI can interact with copper and, using electron paramagnetic resonance and inductively coupled plasma-MS, found that this protein can bind a single Cu(II) ion. We determine the structure of both the apo and copper-bound forms of the protein by X-ray crystallography, uncovering a copper-binding site featuring a unique monohistidine brace ligand set that is highly conserved among DUF1775 domains. These data suggest a possible role for YcnI as a copper chaperone and that DUF1775 domains in other bacterial species may also function in copper homeostasis.


Assuntos
Bacillus subtilis/metabolismo , Cobre/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Quelantes/metabolismo , Cristalografia por Raios X/métodos , Regulação Bacteriana da Expressão Gênica/genética , Homeostase , Ligantes , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Óperon/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
2.
Ecol Lett ; 25(6): 1510-1520, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35546256

RESUMO

Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984-2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate-stress mortality. These forest disturbance risks highlight pervasive climate-sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US-wide risk maps of key climate-sensitive disturbances for improving carbon cycle modeling, conservation and climate policy.


Assuntos
Incêndios , Florestas , Animais , Carbono , Mudança Climática , Insetos , Árvores , Estados Unidos
3.
J Biol Inorg Chem ; 27(6): 529-540, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35994119

RESUMO

A large number of copper binding proteins coordinate metal ions using a shared three-dimensional fold called the cupredoxin domain. This domain was originally identified in Type 1 "blue copper" centers but has since proven to be a common domain architecture within an increasingly large and diverse group of copper binding domains. The cupredoxin fold has a number of qualities that make it ideal for coordinating Cu ions for purposes including electron transfer, enzyme catalysis, assembly of other copper sites, and copper sequestration. The structural core does not undergo major conformational changes upon metal binding, but variations within the coordination environment of the metal site confer a range of Cu-binding affinities, reduction potentials, and spectroscopic properties. Here, we discuss these proteins from a structural perspective, examining how variations within the overall cupredoxin fold and metal binding sites are linked to distinct spectroscopic properties and biological functions. Expanding far beyond the blue copper proteins, cupredoxin domains are used by a growing number of proteins and enzymes as a means of binding copper ions, with many more likely remaining to be identified.


Assuntos
Azurina , Cobre , Azurina/química , Azurina/metabolismo , Sítios de Ligação , Cobre/química , Íons , Metais
4.
PLoS Biol ; 17(3): e2006540, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30897078

RESUMO

Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase ß3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/metabolismo , Catálise , Linhagem Celular , Humanos , Mutagênese/genética , Mutagênese/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Quinases Ativadas por p21/genética
5.
J Biol Chem ; 294(44): 16351-16363, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527086

RESUMO

Copper is critically important for methanotrophic bacteria because their primary metabolic enzyme, particulate methane monooxygenase (pMMO), is copper-dependent. In addition to pMMO, many other copper proteins are encoded in the genomes of methanotrophs, including proteins that contain periplasmic copper-Achaperone (PCuAC) domains. Using bioinformatics analyses, we identified three distinct classes of PCuAC domain-containing proteins in methanotrophs, termed PmoF1, PmoF2, and PmoF3. PCuAC domains from other types of bacteria bind a single Cu(I) ion via an HXnMX21/22HXM motif, which is also present in PmoF3, but PmoF1 and PmoF2 lack this motif entirely. Instead, the PCuAC domains of PmoF1 and PmoF2 bind only Cu(II), and PmoF1 binds additional Cu(II) ions in a His-rich extension to its PCuAC domain. Crystal structures of the PmoF1 and PmoF2 PCuAC domains reveal that Cu(II) is coordinated by an N-terminal histidine brace HX10H motif. This binding site is distinct from those of previously characterized PCuAC domains but resembles copper centers in CopC proteins and lytic polysaccharide monooxygenase (LPMO) enzymes. Bioinformatics analysis of the entire PCuAC family reveals previously unappreciated diversity, including sequences that contain both the HXnMX21/22HXM and HX10H motifs, and sequences that lack either set of copper-binding ligands. These findings provide the first characterization of an additional class of copper proteins from methanotrophs, further expand the PCuAC family, and afford new insight into the biological significance of histidine brace-mediated copper coordination.


Assuntos
Oxigenases/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Sítios de Ligação , Cobre/metabolismo , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Histidina/análogos & derivados , Histidina/química , Histidina/metabolismo , Ligantes , Methylococcaceae/metabolismo , Methylocystaceae/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Compostos Organometálicos/metabolismo , Domínios Proteicos
6.
J Am Chem Soc ; 141(11): 4678-4686, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807125

RESUMO

PmoD, a recently discovered protein from methane-oxidizing bacteria, forms a homodimer with a dicopper CuA center at the dimer interface. Although the optical and electron paramagnetic resonance (EPR) spectroscopic signatures of the PmoD CuA bear similarities to those of canonical CuA sites, there are also some puzzling differences. Here we have characterized the rapid formation (seconds) and slow decay (hours) of this homodimeric CuA site to two mononuclear Cu2+ sites, as well as its electronic and geometric structure, using stopped-flow optical and advanced paramagnetic resonance spectroscopies. PmoD CuA formation occurs rapidly and involves a short-lived intermediate with a λmax of 360 nm. Unlike other CuA sites, the PmoD CuA is unstable, decaying to two type 2 Cu2+ centers. Surprisingly, NMR data indicate that the PmoD CuA has a pure σu* ground state rather than the typical equilibrium between σu* and πu of all other CuA proteins. EPR, ENDOR, ESEEM, and HYSCORE data indicate the presence of two histidine and two cysteine ligands coordinating the CuA core in a highly symmetrical fashion. This report significantly expands the diversity and understanding of known CuA sites.


Assuntos
Proteínas de Bactérias/química , Cobre , Elétrons , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
7.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27482083

RESUMO

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Assuntos
Caspase 1/genética , Inflamassomos/metabolismo , Corpos de Lewy/metabolismo , Neurônios/metabolismo , Agregados Proteicos/genética , alfa-Sinucleína/genética , Compostos de Alúmen/farmacologia , Caspase 1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/patologia , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nigericina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vitamina K 3/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , para-Aminobenzoatos/farmacologia
8.
J Biol Chem ; 290(5): 2842-53, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25525273

RESUMO

Familial cerebral cavernous malformations (CCMs) are predominantly neurovascular lesions and are associated with mutations within the KRIT1, CCM2, and PDCD10 genes. The protein products of KRIT1 and CCM2 (Krev interaction trapped 1 (KRIT1) and cerebral cavernous malformations 2 (CCM2), respectively) directly interact with each other. Disease-associated mutations in KRIT1 and CCM2 mostly result in loss of their protein products, although rare missense point mutations can also occur. From gene sequencing of patients known or suspected to have one or more CCMs, we discover a series of missense point mutations in KRIT1 and CCM2 that result in missense mutations in the CCM2 and KRIT1 proteins. To place these mutations in the context of the molecular level interactions of CCM2 and KRIT1, we map the interaction of KRIT1 and CCM2 and find that the CCM2 phosphotyrosine binding (PTB) domain displays a preference toward the third of the three KRIT1 NPX(Y/F) motifs. We determine the 2.75 Å co-crystal structure of the CCM2 PTB domain with a peptide corresponding to KRIT1(NPX(Y/F)3), revealing a Dab-like PTB fold for CCM2 and its interaction with KRIT1(NPX(Y/F)3). We find that several disease-associated missense mutations in CCM2 have the potential to interrupt the KRIT1-CCM2 interaction by destabilizing the CCM2 PTB domain and that a KRIT1 mutation also disrupts this interaction. We therefore provide new insights into the architecture of CCM2 and how the CCM complex is disrupted in CCM disease.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Transporte/genética , Cromatografia em Gel , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Imunoprecipitação , Proteína KRIT1 , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Mutação de Sentido Incorreto , Mutação Puntual/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética
9.
J Cell Sci ; 127(Pt 4): 701-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24481819

RESUMO

Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.


Assuntos
Neoplasias do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Permeabilidade Capilar , Proteínas de Transporte/metabolismo , Neoplasias do Sistema Nervoso Central/irrigação sanguínea , Hemangioma Cavernoso do Sistema Nervoso Central/irrigação sanguínea , Humanos , Proteína KRIT1 , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
10.
Cell Mol Life Sci ; 71(10): 1881-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24287896

RESUMO

Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Proteínas de Transporte/química , Morte Celular , Exocitose , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Humanos , Proteínas de Membrana/química , Proteínas Associadas aos Microtúbulos/química , Paxilina/metabolismo , Tubulina (Proteína)/metabolismo
11.
J Inorg Biochem ; 253: 112501, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38342077

RESUMO

Copper serves as an essential cofactor for nearly all living organisms. There are still many gaps remaining in our knowledge of how Gram-positive bacteria import copper and maintain homeostasis. To obtain a better understanding of how these processes work, here we focus on the ycnKJI operon responsible for regulating copper levels in the Gram-positive bacterium Bacillus subtilis. This operon encodes three Cu-related proteins: a copper-dependent transcriptional repressor (YcnK), a putative copper importer (YcnJ), and a copper-binding protein of unknown function (YcnI). We previously found that YcnI's extracellular Domain of Unknown Function 1775 (DUF1775) houses a monohistidine brace motif that coordinates a single Cu(II) ion. The Cu(II) binding site includes a highly conserved tryptophan residue. Here, we investigate the role of that tryptophan and the ability of the protein to interact with other oxidation states of Cu. We find that YcnI exhibits strong preference for binding Cu in the oxidized Cu(II) state, and that the conserved tryptophan residue is not essential for the interaction. We determine the structure of a tryptophan variant to 1.95 Å resolution that indicates that the tryptophan is needed to stabilize the metal binding interaction, and find that this variant has weaker affinity for Cu(II) than the wild-type protein. Together, these data provide further insights into the DUF1775 domain family and reveal the role of the conserved tryptophan residue.


Assuntos
Cobre , Triptofano , Cobre/química , Triptofano/metabolismo , Sítios de Ligação , Fatores de Transcrição/metabolismo , Domínios Proteicos , Ligação Proteica , Proteínas de Bactérias/química
12.
Methods Mol Biol ; 2152: 291-302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524560

RESUMO

Cerebral cavernous malformations (CCM) are dysplasias that primarily occur in the neurovasculature, and are associated with mutations in three genes: KRIT1, CCM2, and PDCD10, the protein products of which are KRIT1 (Krev/Rap1 Interaction Trapped 1; CCM1, cerebral cavernous malformations 1), CCM2 (cerebral cavernous malformations 2; OSM, osmosensing scaffold for MEKK3), and CCM3 (cerebral cavernous malformations 3; PDCD10, programmed cell death 10). Until recently, these proteins were relatively understudied at the molecular level, and only three folded domains were documented. These were a band 4.1, ezrin, radixin, moesin (FERM), and an ankyrin repeat domain (ARD) in KRIT1, and a phosphotyrosine-binding (PTB) domain in CCM2. Over the past 10 years, a crystallographic approach has been used to discover a series of previously unidentified domains within the CCM proteins. These include a non-functional Nudix (or pseudonudix) domain in KRIT1, a harmonin homology domain (HHD) in CCM2, and dimerization and focal adhesion targeting (FAT)-homology domains within CCM3. Many of the roles of these domains have been revealed by structure-guided studies that show the CCM proteins can directly interact with one another to form a signaling scaffold, and that the "CCM complex" functions in signal transduction by interacting with other binding partners, including ICAP1, RAP1, and MEKK3. In this chapter, we describe the crystallization of CCM protein domains alone, and with their interaction partners.


Assuntos
Cristalografia , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , MAP Quinase Quinase Quinase 3/química , MAP Quinase Quinase Quinase 3/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade
13.
Int J Biol Markers ; 23(4): 199-206, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19199266

RESUMO

Hormone therapy with tamoxifen has long been the established adjuvant treatment for node-positive, estrogen-receptor-positive breast cancer in postmenopausal women. Since 30-40% of these patients fail to respond, reliableoutcome prediction is necessary for successful treatment allocation. Using pathobiological variables (available in mostclinical records: tumor size, nodal involvement, estrogen and progesterone receptor content) from 596 patients recruitedat a comprehensive cancer center, we developed a prediction model which we validated in an independent cohort of 175patients recruited at a general hospital. Calculated at 3 and 4 years of follow-up, the discrimination indices were 0.716[confidence limits (CL) 0.641, 0.752] and 0.714 (CL 0.650, 0.750) for the training data, and 0.726 (CL 0.591, 0.769) and0.677 (CL 0.580, 0.745) for the testing data. Waiting for more effective approaches from genomic and proteomic studies, amodel based on consolidated pathobiological variables routinely assessed at relatively low costs may be considered as thereference for assessing the gain of new markers over traditional ones, thus substantially improving the conventional use ofprognostic criteria.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Modelos Estatísticos , Recidiva Local de Neoplasia/metabolismo , Tamoxifeno/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Nomogramas , Pós-Menopausa , Valor Preditivo dos Testes , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
14.
Toxicon ; 150: 188-194, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29857087

RESUMO

This report describes a series of ten cases of fulminant pulmonary haemorrhage in dogs following envenomation by the eastern brown snake (Pseudonaja textilis) in south eastern Queensland, Australia. All cases were presented for veterinary treatment during 2011-2018 at a specialist veterinary emergency centre. Each case received prompt antivenom treatment and supportive care. Pulmonary haemorrhage was diagnosed based on clinical examination; overt haemoptysis; thoracic radiographic demonstration of a diffuse alveolar pattern; and, the presence of venom induced consumptive coagulopathy. The median elapsed time from hospital admission to onset of haemoptysis was 2 h (range 0-18 h). In 80% (8/10) of cases endotracheal intubation was required, whilst 20% (2/10) were successfully treated with mask oxygen supplementation alone, and 40% (4/10) received mechanical ventilation; but only 25% (1/4) of these survived to hospital discharge. Fresh frozen canine plasma was administered to 70% (7/10) of cases and 43% (3/7) of these survived. Of the total number of cases presented for treatment, 30% (3/10) survived to hospital discharge, 60% (6/10) were euthanised due to poor prognosis and 10% (1/10) died from cardiac arrest. Initial serum brown snake venom antigen levels were retrospectively measured from frozen serum samples by venom specific sandwich ELISA in two dogs at 154 ng/mL (survived) and 3607 ng/mL (euthanised); no free venom was detected post-antivenom. Dogs that survived were discharged from hospital without apparent complications. Pulmonary haemorrhage is an uncommon event following envenomation by P. textilis in dogs and has not been described in similarly envenomed humans. This case series highlights the potential for fulminant and fatal pulmonary haemorrhage in dogs following eastern brown snake envenomation.


Assuntos
Doenças do Cão/patologia , Elapidae , Hemoptise/veterinária , Hemorragia/veterinária , Pneumopatias/veterinária , Mordeduras de Serpentes/veterinária , Animais , Antivenenos/uso terapêutico , Austrália , Doenças do Cão/terapia , Cães , Venenos Elapídicos/sangue , Feminino , Hemoptise/mortalidade , Hemoptise/patologia , Hemorragia/mortalidade , Hemorragia/patologia , Pneumopatias/mortalidade , Pneumopatias/patologia , Masculino , Estudos Retrospectivos , Mordeduras de Serpentes/mortalidade , Mordeduras de Serpentes/patologia , Mordeduras de Serpentes/terapia , Resultado do Tratamento
15.
J Phys Chem B ; 122(9): 2587-2599, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29095618

RESUMO

Water is an extensively self-associated liquid due to its extensive hydrogen bond (H-bond) forming ability. The resulting H-bonded network fluid exhibits nearly continuous absorption of light from the terahertz to the near-IR region. The relatively weak bend+libration water combination band (centered at 2130 cm-1) has been largely overlooked as a reporter of liquid water's structure and dynamics despite its location in a convenient region of the IR for spectroscopic study. The intermolecular nature of the combination band leads to a unique absorption signal that reports collectively on the rigidity of the H-bonding network in the presence of many different solutes. This study reports comprehensively how the combination band acts as an intrinsic and collective probe in various chemically and biologically relevant solutions, including salts of varying character, denaturants, osmolytes, crowders, and surfactants that form reverse micelles and micelles. While we remark on changes in the line width and intensity of this combination band, we mainly focus on the frequency and how the frequency reports on the collective H-bonding network of liquid water. We also comment on the "association band" moniker often applied to this band and how to evaluate discrete features in this spectral region that sometimes appear in the IR spectra of specific kinds of aqueous samples of organic solutes, especially those with very high solute concentrations, with the conclusion that most of these discrete spectral features come exclusively from the solutes and do not report on the water. Contrasts are drawn throughout this work between the collective and delocalized reporting ability of the combination band and the response of more site-specific vibrations like the much-investigated OD stretch of HDO in H2O: the combination band is a unique reporter of H-bonding structure and dynamics and fundamentally different than any local mode probe. Since this band appears as the spectroscopic "background" for many local-mode reporter groups, we note the possibility of observing both local and collective solvent dynamics at the same time in this spectral region.

16.
Nat Commun ; 9(1): 4276, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323281

RESUMO

Methane-oxidizing microbes catalyze the oxidation of the greenhouse gas methane using the copper-dependent enzyme particulate methane monooxygenase (pMMO). Isolated pMMO exhibits lower activity than whole cells, however, suggesting that additional components may be required. A pMMO homolog, ammonia monooxygenase (AMO), converts ammonia to hydroxylamine in ammonia-oxidizing bacteria (AOB) which produce another potent greenhouse gas, nitrous oxide. Here we show that PmoD, a protein encoded within many pmo operons that is homologous to the AmoD proteins encoded within AOB amo operons, forms a copper center that exhibits the features of a well-defined CuA site using a previously unobserved ligand set derived from a cupredoxin homodimer. PmoD is critical for copper-dependent growth on methane, and genetic analyses strongly support a role directly related to pMMO and AMO. These findings identify a copper-binding protein that may represent a missing link in the function of enzymes critical to the global carbon and nitrogen cycles.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Betaproteobacteria/metabolismo , Cobre/metabolismo , Metano/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Homeostase , Ligantes , Oxirredução , Domínios Proteicos , Multimerização Proteica
17.
Cancer Res ; 56(4): 689-93, 1996 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-8630996

RESUMO

The p53 protein is a multifunctional transcriptional regulator involved in cellular response to DNA damage and has been implicated as a putative determinant of sensitivity of tumor cells to cytotoxic agents. Since the p53 gene becomes inactivated in over one-half of advanced ovarian carcinoma, in this study we have examined the relationships between p53 gene alterations, p53 immunoreactivity, and response to cisplatin-based chemotherapy in ovarian cancer patients. All patients had advanced (FIGO stage III or IV) ovarian carcinoma and, with one exception, were untreated at the time of collection of tumor specimens. After initial debulking surgery, patients received high-dose cisplatin therapy. Tumor samples were analyzed for p53 gene mutations and for p53 protein accumulation, and the findings were correlated with tumor responsiveness. Of the 33 tumors examined, p53 gene mutations were found in 20 cases, including 15 missense mutations, 2 deletions, 2 nonsense mutations, and a base substitution at splice site. Twenty tumors showed positive immunostaining for p53. Only missense mutations were associated with positive immunostaining. In addition, p53 overexpression was detected in five tumors in the absence of mutations. Most (12 of 14) of the missense mutations associated with p53 protein stabilization were found refractory to therapy, as well as tumors overexpressing wild-type p53 (4 of 5). A significant correlation has been found between p53 accumulation, type of mutation (i.e., missense mutations), and pathological response to cisplatin-based therapy. In conclusion, the present results are consistent with a role of p53 as a determinant of chemosensitivity of ovarian carcinoma.


Assuntos
Cisplatino/uso terapêutico , Genes p53 , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Mutação Puntual , Deleção de Sequência , Proteína Supressora de Tumor p53/biossíntese , Alelos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Códon , Éxons , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Íntrons , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/cirurgia
18.
J Clin Oncol ; 18(14): 2702-9, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10894869

RESUMO

PURPOSE: To analyze the time-dependent prognostic role of the investigated variables, considered, when appropriate, on a continuous scale, for the purpose of evaluating and describing the interrelationships between clinically relevant patient and tumor characteristics (age, size and histology, and estrogen receptor [ER] and progesterone receptor content) and the risk of new disease manifestation. PATIENTS AND METHODS: We applied a flexible statistical model to a case series of 1,793 patients with axillary lymph node-negative breast cancer with a minimal potential follow-up of 10 years. To avoid a potential confounding effect of adjuvant treatment, only patients given local-regional therapy until relapse were considered. RESULTS: ER content and tumor size (adjusted for all the other covariates) showed a time-dependent relationship with the risk of new disease manifestations. In particular, ER content failed to show a prognostic effect within the first years of follow-up; thereafter, a positive association with risk of relapse was observed. For tumor size, within the first years of follow-up, the risk of relapse was directly related to size for only tumors up to 2.5 cm in diameter; thereafter, the impact on prognosis progressively decreased. CONCLUSION: The availability of a long follow-up on a large breast cancer series, as well as the use of innovative statistical approaches, allowed us to explore the functional relation between steroid receptors and clinical outcome and to generate a hypothesis on the involvement of ER in favoring long-term metastasis development.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Esteroides , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Seguimentos , Humanos , Funções Verossimilhança , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Tempo
19.
Nat Commun ; 6: 7937, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26235885

RESUMO

Cerebral cavernous malformations 2 (CCM2) loss is associated with the familial form of CCM disease. The protein kinase MEKK3 (MAP3K3) is essential for embryonic angiogenesis in mice and interacts physically with CCM2, but how this interaction is mediated and its relevance to cerebral vasculature are unknown. Here we report that Mekk3 plays an intrinsic role in embryonic vascular development. Inducible endothelial Mekk3 knockout in neonatal mice is lethal due to multiple intracranial haemorrhages and brain blood vessels leakage. We discover direct interaction between CCM2 harmonin homology domain (HHD) and the N terminus of MEKK3, and determine a 2.35 Å cocrystal structure. We find Mekk3 deficiency impairs neurovascular integrity, which is partially dependent on Rho-ROCK signalling, and that disruption of MEKK3:CCM2 interaction leads to similar neurovascular leakage. We conclude that CCM2:MEKK3-mediated regulation of Rho signalling is required for maintenance of neurovascular integrity, unravelling a mechanism by which CCM2 loss leads to disease.


Assuntos
Vasos Sanguíneos/embriologia , Circulação Cerebrovascular/genética , Hemorragias Intracranianas/genética , MAP Quinase Quinase Quinase 3/genética , Proteínas dos Microfilamentos/genética , Neovascularização Fisiológica/genética , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/metabolismo , Permeabilidade Capilar/genética , Cristalização , Hemangioma Cavernoso do Sistema Nervoso Central/genética , MAP Quinase Quinase Quinase 3/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
20.
J Cell Biol ; 208(7): 987-1001, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25825518

RESUMO

Mutations in the essential adaptor proteins CCM2 or CCM3 lead to cerebral cavernous malformations (CCM), vascular lesions that most frequently occur in the brain and are strongly associated with hemorrhagic stroke, seizures, and other neurological disorders. CCM2 binds CCM3, but the molecular basis of this interaction, and its functional significance, have not been elucidated. Here, we used x-ray crystallography and structure-guided mutagenesis to show that an α-helical LD-like motif within CCM2 binds the highly conserved "HP1" pocket of the CCM3 focal adhesion targeting (FAT) homology domain. By knocking down CCM2 or CCM3 and rescuing with binding-deficient mutants, we establish that CCM2-CCM3 interactions protect CCM2 and CCM3 proteins from proteasomal degradation and show that both CCM2 and CCM3 are required for normal endothelial cell network formation. However, CCM3 expression in the absence of CCM2 is sufficient to support normal cell growth, revealing complex-independent roles for CCM3.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células/genética , Sistema Nervoso Central/irrigação sanguínea , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/ultraestrutura , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Linhagem Celular , Cristalografia por Raios X , Expressão Gênica , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Mutagênese , Paxilina/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteólise , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/ultraestrutura , Interferência de RNA , RNA Interferente Pequeno , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA