Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Physiol ; 602(12): 2855-2872, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709959

RESUMO

Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units' coherence within the delta (1-5 Hz), alpha (5-15 Hz), and beta (15-35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations. KEY POINTS: We investigated whether changes in muscle length, achieved by changing joint position, could influence common synaptic oscillations to spinal motor neurons, particularly in the tremor band (5-15 Hz). Our results demonstrate that changing muscle length from shorter to longer induces reductions in the magnitude of alpha band oscillations in common synaptic inputs. Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band. Longer twitch durations were observed in the longer muscle length condition compared to the shorter, suggesting that increasing muscle length enhances the muscle's low-pass filtering properties. Changes in the peripheral contractile properties of motor units due to changes in muscle length significantly influence the transmission of shared synaptic inputs into muscle force output. These findings prove the interplay between muscle mechanics and neural adaptations.


Assuntos
Neurônios Motores , Contração Muscular , Músculo Esquelético , Humanos , Neurônios Motores/fisiologia , Masculino , Adulto , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Contração Muscular/fisiologia , Feminino , Eletromiografia , Adulto Jovem , Sinapses/fisiologia , Medula Espinal/fisiologia
2.
Eur J Appl Physiol ; 122(2): 317-330, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34677625

RESUMO

PURPOSE: Muscle-tendon length can influence central and peripheral motor unit (MU) characteristics, but their interplay is unknown. This study aims to explain the effect of muscle length on MU firing and contractile properties by applying deconvolution of high-density surface EMG (HDEMG), and torque signals on the same MUs followed at different lengths during voluntary contractions. METHODS: Fourteen participants performed isometric ankle dorsiflexion at 10% and 20% of the maximal voluntary torque (MVC) at short, optimal, and long muscle lengths (90°, 110°, and 130° ankle angles, respectively). HDEMG signals were recorded from the tibialis anterior, and MUs were tracked by cross-correlation of MU action potentials across ankle angles and torques. Torque twitch profiles were estimated using model-based deconvolution of the torque signal based on composite MU spike trains. RESULTS: Mean discharge rate of matched motor units was similar across all muscle lengths (P = 0.975). Interestingly, the increase in mean discharge rate of MUs matched from 10 to 20% MVC force levels at the same ankle angle was smaller at 110° compared with the other two ankle positions (P = 0.003), and the phenomenon was explained by a greater increase in twitch torque at 110° compared to the shortened and lengthened positions (P = 0.002). This result was confirmed by the deconvolution of electrically evoked contractions at different stimulation frequencies and muscle-tendon lengths. CONCLUSION: Higher variations in MU twitch torque at optimal muscle lengths likely explain the greater force-generation capacity of muscles in this position.


Assuntos
Articulação do Tornozelo/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Potenciais de Ação/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Torque
3.
Exp Brain Res ; 237(8): 1889-1897, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31098673

RESUMO

We investigated the influence of the ageing process on the performance of the motor control system accuracy during a challenging motor task throughout the analysis of force output oscillations. The force signal of the first dorsal interosseous during linearly varying static contraction, 0-100-0% of the maximal volitional abduction in 15 s, was studied in 11 young and older adults. The relative error between the target and the actual force as well as several parameters of the force oscillations (corrections) were estimated. To understand the experimental results, we analyzed the force output generated by a set of computational simulations of a pool of motor units controlled by a proportional-integral-derivative system. Compared to young adults the older subjects presented larger errors and a lower number of corrections with longer duration and larger relative amplitude. The motor control system modelling varied the error update frequency (UF) of the controller (from 1 to 2.5 Hz) as well as the range of contraction time (CT) of the recruited motor unit (30-90 ms and 60-120 ms reflecting young and old ranges, respectively). The simulation generated force profiles with parameters similar to experimental recordings in young (UF = 1.5; CT 30-90 ms) and older (UF = 1; CT 60-120 ms) adults. Interestingly, the results of the simulations suggested that the improvement in the error update frequency of the controller was not able to compensate for the contractile changes in the motor unit twitches. In conclusion, the peripheral contractile changes with age can influence motor unit control strategies and represent a crucial phenomenon in the generation of larger force oscillations in older adults.


Assuntos
Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Contração Isométrica/fisiologia , Destreza Motora/fisiologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Eletromiografia/métodos , Feminino , Humanos , Masculino , Adulto Jovem
4.
J Sports Sci ; 34(2): 133-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25897660

RESUMO

The aim of the study was to evaluate, by an electromyographic (EMG) and mechanomyographic (MMG) combined approach, whether years of specific climbing activity induced neuromuscular changes towards performances related to a functional prevalence of fast resistant or fast fatigable motor units. For this purpose, after the maximum voluntary contraction (MVC) assessment, 11 elite climbers and 10 controls performed an exhaustive handgrip isometric effort at 80% MVC. Force, EMG and MMG signals were recorded from the finger flexor muscles during contraction. Time and frequency domain analysis of EMG and MMG signals was performed. In climbers: (i) MVC was higher (762 ± 34 vs 512 ± 57 N; effect size: 1.64; confidence interval: 0.65-2.63; P < 0.05); (ii) endurance time at 80% MVC was 43% longer (34.2 ± 3.7 vs 22.3 ± 1.5 s; effect size: 1.21; confidence interval: 0.28-2.14; P < 0.05); (iii) force accuracy and stability were greater during contraction (P < 0.05); (iv) EMG and MMG parameters were higher throughout the entire isometric effort (P < 0.05). Collectively, force, EMG and MMG combined analysis revealed that several years of specific climbing activity addressed the motor control system to adopt muscle activation strategies based on the functional prevalence of fast resistant motor units.


Assuntos
Dedos/fisiologia , Contração Isométrica , Neurônios Motores/fisiologia , Montanhismo/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Adaptação Fisiológica , Antropometria , Fenômenos Biomecânicos , Eletromiografia , Força da Mão , Humanos , Masculino , Miografia , Resistência Física/fisiologia , Adulto Jovem
5.
J Phys Ther Sci ; 28(3): 769-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27134356

RESUMO

[Purpose] The purpose of this case series was to determine the effects of robot-assisted hand rehabilitation with a Gloreha device on skeletal muscle perfusion, spasticity, and motor function in subjects with poststroke hemiparesis. [Subjects and Methods] Seven patients, 2 women and 5 men (mean ± SD age: 60.5 ±6.3 years), with hemiparesis (>6 months poststroke), received passive mobilization of the hand with a Gloreha (Idrogenet, Italy), device (30 min per day; 3 sessions a week for 3 weeks). The outcome measures were the total hemoglobin profiles and tissue oxygenation index (TOI) in the muscle tissue evaluated through near-infrared spectroscopy. The Motricity Index and modified Ashworth Scale for upper limb muscles were used to assess mobility of the upper extremity. [Results] Robotic assistance reduced spasticity after the intervention by 68.6% in the upper limb. The Motricity Index was unchanged in these patients after treatment. Regarding changes in muscle perfusion, significant improvements were found in total hemoglobin. There were significant differences between the pre- and posttreatment modified Ashworth scale. [Conclusion] The present work provides novel evidence that robotic assistance of the hand induced changes in local muscle blood flow and oxygen supply, diminished spasticity, and decreased subject-reported symptoms of heaviness and stiffness in subjects with post-stroke hemiparesis.

6.
Muscle Nerve ; 51(1): 134-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25255887

RESUMO

INTRODUCTION: The relationship between output force and motor command depends on the intrinsic dynamic responses of motor units (MUs), which can be characterized by evoking accurate sinusoidal force responses at different frequencies. In this study we sought to determine whether sinusoidal modulation of the stimulation rate of single MUs results in reliable sinusoidal force changes. METHODS: Single axons of rat ventral roots were stimulated electrically by changing the pulse rate sinusoidally at different frequency modulation (0.4-1.0-2.0-4.0 Hz for slow, 1.0-2.0-4.0-7.0 Hz for fast MUs). The twitching sinusoidal force signal was interpolated. We calculated harmonic distortion (HD) and the correlation coefficient (r) between theoretical sines and interpolated signals. RESULTS: HD was always <5%, and r was always >0.97. CONCLUSIONS: The HD and r-values obtained indicate highly reliable sinusoidal responses, which supports the potential use of this method to further characterize the dynamic behavior of single MUs.


Assuntos
Potenciais Evocados/fisiologia , Neurônios Motores/fisiologia , Animais , Fenômenos Biofísicos/fisiologia , Estimulação Elétrica , Técnicas In Vitro , Masculino , Estimulação Física , Ratos , Ratos Wistar , Raízes Nervosas Espinhais/citologia
7.
Eur Spine J ; 24 Suppl 7: 898-905, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26441255

RESUMO

PURPOSE: The purpose of this study was to describe the association between body image perception and sagittal balance (SB) parameters in Parkinson's Disease (PD) patients. METHODS: 77 consecutive PD patients were included: 44 males, 33 females; 68.9 ± 6.8 years; 5.3 ± 3.8 years from diagnosis (YFD); Hoehn Yahr (HY) 2.0 ± 0.8, Unified Parkinson's Disease rating Score-Motor section (UPDRS-M) 11.8 ± 9.3. Spinopelvic angles and SB were radiographically assessed. Body image perception was assessed through Trunk appearance scale (TAPS) and Stunkard Figure rating scale for BMI. Beck Depression Inventory (BDI) was used to evaluate depressive mood. RESULTS: We detected 32 (41.5 % of cohort) Parkinson Disease patients with scoliosis ≥15° Cobb. The mean calculated BMI was 27.1 ± 3.9 kg/m(2). According to the Figure Rating Scale, the perceived BMI averaged 27.2 ± 4.5 kg/m(2), while the mean desired BMI was 24.4 ± 2.7 kg/m(2), TAPS scored 3.4 ± 0.9 points, while BDI 12.3 ± 7.9 points. TAPS had a weak negative correlation with the duration of disease (r = -0.25, p < 0.05) and a correlation with H&Y score (r = 0.28, p < 0.05). Sacral Slope was weakly correlated to the calculated BMI (r = -0.24, p < 0.05). SSA and SPA had a negative correlation with the TAPS mean score (respectively, r = -0.36 and -0.24, p < 0.05). BDI presented a weak correlation with TAPS (r = 0.27, p < 0.05) but not with self esteemed BMI values (p > 0.05). CONCLUSIONS: Spinopelvic parameters and depression had a specific and concurrent influence on trunk deformity perception but not on BMI self-esteem.


Assuntos
Imagem Corporal , Doença de Parkinson/psicologia , Equilíbrio Postural , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Depressão/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Ossos Pélvicos/fisiopatologia , Coluna Vertebral/fisiopatologia
8.
Eur J Appl Physiol ; 114(10): 2105-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24957414

RESUMO

PURPOSE: Surface electromyogram (EMG) spike shape analysis (SSA) has recently been proposed as an adjunct tool to EMG time and frequency domain analysis to increase our knowledge of motor unit (MU) control strategies. The study was aimed to understand more in MU deactivation strategy during torque decrement, and its possible changes in fatigued muscle, using a combination of traditional time and frequency domain analysis and SSA techniques. METHODS: EMG was detected from the biceps brachii of 11 untrained male subjects during static down-going ramp contractions (90-0% of the maximal voluntary contraction, MVC) under non-fatigued (DGR) and fatigued (FDGR) conditions. The root mean square (RMS) and mean frequency (MF), as well as SSA parameters, were calculated on 1-s EMG windows centred on each 10 % MVC step for both conditions. RESULTS: In both the DGR and FDGR EMG-RMS, mean spike amplitude and mean spike slope decreased by 50 % in the 90-60 % MVC. The mean spike frequency also decreased by 50 % in the 30-10 % MVC. Except the "mean number of spikes per second" all the other estimated EMG parameters were significantly different during FDGR compared to DGR. CONCLUSION: The dynamics of EMG parameters during torque decrement would support a MU deactivation strategy which relies more on MU de-recruitment in the high % MVC range and more on firing rate reduction in the low % MVC range. The adopted integrated approach to EMG signal processing could indicate that SSA is an important tool to disclose alterations in motor control due to fatigue.


Assuntos
Fadiga Muscular , Músculo Esquelético/fisiologia , Torque , Adulto , Humanos , Masculino , Contração Muscular
9.
J Neuroeng Rehabil ; 11: 17, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24568180

RESUMO

Transcutaneous neuromuscular electrical stimulation applied in clinical settings is currently characterized by a wide heterogeneity of stimulation protocols and modalities. Practitioners usually refer to anatomic charts (often provided with the user manuals of commercially available stimulators) for electrode positioning, which may lead to inconsistent outcomes, poor tolerance by the patients, and adverse reactions. Recent evidence has highlighted the crucial importance of stimulating over the muscle motor points to improve the effectiveness of neuromuscular electrical stimulation. Nevertheless, the correct electrophysiological definition of muscle motor point and its practical significance are not always fully comprehended by therapists and researchers in the field. The commentary describes a straightforward and quick electrophysiological procedure for muscle motor point identification. It consists in muscle surface mapping by using a stimulation pen-electrode and it is aimed at identifying the skin area above the muscle where the motor threshold is the lowest for a given electrical input, that is the skin area most responsive to electrical stimulation. After the motor point mapping procedure, a proper placement of the stimulation electrode(s) allows neuromuscular electrical stimulation to maximize the evoked tension, while minimizing the dose of the injected current and the level of discomfort. If routinely applied, we expect this procedure to improve both stimulation effectiveness and patient adherence to the treatment.The aims of this clinical commentary are to present an optimized procedure for the application of neuromuscular electrical stimulation and to highlight the clinical implications related to its use.


Assuntos
Terapia por Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Humanos
10.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866498

RESUMO

The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units' coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural components unrelated to the specific task.


Assuntos
Eletromiografia , Aprendizagem , Neurônios Motores , Destreza Motora , Músculo Esquelético , Humanos , Masculino , Feminino , Neurônios Motores/fisiologia , Aprendizagem/fisiologia , Adulto , Destreza Motora/fisiologia , Adulto Jovem , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Tremor/fisiopatologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia
11.
Front Med (Lausanne) ; 10: 1185479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435534

RESUMO

Introduction: Patients admitted to the intensive care unit (ICU) following severe acute respiratory syndrome 2 (SARS-CoV-2) infection may have muscle weakness up to 1 year or more following ICU discharge. However, females show greater muscle weakness than males, indicating greater neuromuscular impairment. The objective of this work was to assess sex differences in longitudinal physical functioning following ICU discharge for SARS-CoV-2 infection. Methods: We performed longitudinal assessment of physical functioning in two groups: 14 participants (7 males, 7 females) in the 3-to-6 month and 28 participants (14 males, 14 females) in the 6-to-12 month group following ICU discharge and assessed differences between the sexes. We examined self-reported fatigue, physical functioning, compound muscle action potential (CMAP) amplitude, maximal strength, and the neural drive to the tibialis anterior muscle. Results: We found no sex differences in the assessed parameters in the 3-to-6-month follow-up, indicating significant weakness in both sexes.Sex differences emerged in the 6-to-12-month follow-up. Specifically, females exhibited greater impairments in physical functioning, including lower strength, walking lower distances, and high neural input even 1 year following ICU-discharge. Discussion: Females infected by SARS-CoV-2 display significant impairments in functional recovery up to 1 year following ICU discharge. The effects of sex should be considered in post-COVID neurorehabilitation.

12.
Front Neurol ; 14: 1235734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073634

RESUMO

Introduction: Long-term weakness is common in survivors of COVID-19-associated acute respiratory distress syndrome (CARDS). We longitudinally assessed the predictors of muscle weakness in patients evaluated 6 and 12 months after intensive care unit discharge with in-person visits. Methods: Muscle strength was measured by isometric maximal voluntary contraction (MVC) of the tibialis anterior muscle. Candidate predictors of muscle weakness were follow-up time, sex, age, mechanical ventilation duration, use of steroids in the intensive care unit, the compound muscle action potential of the tibialis anterior muscle (CMAP-TA-S100), a 6-min walk test, severe fatigue, depression and anxiety, post-traumatic stress disorder, cognitive assessment, and body mass index. We also compared the clinical tools currently available for the evaluation of muscle strength (handgrip strength and Medical Research Council sum score) and electrical neuromuscular function (simplified peroneal nerve test [PENT]) with more objective and robust measures of force (MVC) and electrophysiological evaluation of the neuromuscular function of the tibialis anterior muscle (CMAP-TA-S100) for their essential role in ankle control. Results: MVC improved at 12 months compared with 6 months. CMAP-TA-S100 (P = 0.016) and the presence of severe fatigue (P = 0.036) were independent predictors of MVC. MVC was strongly associated with handgrip strength, whereas CMAP-TA-S100 was strongly associated with PENT. Discussion: Electrical neuromuscular abnormalities and severe fatigue are independently associated with reduced MVC and can be used to predict the risk of long-term muscle weakness in CARDS survivors.

13.
Front Physiol ; 13: 799565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153831

RESUMO

Neuromuscular fatigue could negatively affect postural balance, but its effects on dynamic postural regulation are still debated. This study aimed to investigate whether a fatigue protocol on calf muscle could affect muscle activation strategies and dynamic balance performance. Seventeen male adults (age 24.1 ± 4.6 years; height 183.9 ± 7.2 cm; weight 80.2 ± 7.2 kg) volunteered in the study. They performed a dynamic test on an instrumented platform, which provided anterior-posterior oscillations on the sagittal plane, before and after a localized fatigue protocol. High-density surface electromyographical (EMG) signals were recorded bilaterally from the soleus and the medial gastrocnemius muscles. The fatigue protocol, consisting of two quasi-isometric tiptoe standing exercise to failure with a fixed load, did not affect the global dynamic balance performance. Conversely, the frequency value corresponding to 95% of the total power spectrum density of the angular displacement signal increased after fatigue (from 1.03 ± 0.42 to 1.31 ± 0.42 Hz; p < 0.05). The EMG analysis showed a significant difference in the PRE/POST fatigue ratio of the root-mean-square (RMS) between the soleus and the gastrocnemius medialis muscles. No differences were detected for the coefficient of variation and the barycenter coordinates of the RMS EMG values between muscles and sides. The variations in the frequency content of the angular displacement and EMG activity across muscles may be related to an increase in the calf muscles stiffness after fatigue. The role of neuromechanical calf muscle properties seems to be relevant in maintaining the dynamic postural performance after a quasi-isometric fatigue protocol until failure.

14.
Front Neurol ; 11: 540893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192970

RESUMO

Introduction: This study quantified stroke-related changes in the following: (1) the averaged discharge rate of motor units (individually tracked and untracked) identified from high-density electromyography (HD-EMG) recordings, (2) global muscle EMG properties of the dorsiflexors during a fatiguing contraction, and the relationship between task endurance and measures of leg function. Methods: Ten individuals with chronic stroke performed a sustained sub-maximal, isometric, fatiguing dorsiflexion contraction in paretic and non-paretic legs. Motor-unit firing behavior, task duration, maximal voluntary contraction strength (MVC), and clinical measures of leg function were obtained. Results: Compared to the non-paretic leg, the paretic leg task duration was shorter, and there was a larger exercise-related reduction in motor unit global rates, individually tracked discharge rates, and overall magnitude of EMG. Task duration of the paretic leg was more predictive of walking speed and lower extremity Fugl-Meyer scores compared to the non-paretic leg. Discussion: Paretic leg muscle fatigability is increased post stroke. It is characterized by impaired rate coding and recruitment and relates to measures of motor function.

15.
J Electromyogr Kinesiol ; 55: 102472, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32987340

RESUMO

Acute changes in central control and peripheral properties of motor units following a half-marathon has never been examined in master athletes. Therefore, the main purpose of this study was to estimate the firing properties and twitch characteristics of motor units after a 21-km race in a group of ten trained older adults. High-density surface EMG decomposition was used to identify motor unit activity during a submaximal contraction of the tibialis anterior muscle before and after the half marathon. The area of the estimated motor unit twitch profile was found smaller after the race (P = 0.039). This reduction in contractile efficiency was compensated by a significant increase in the initial and average discharge rate of the identified motor units (P < 0.001). By estimating the amount of shared and independent synaptic input to tibialis anterior motor neurons, we demonstrated that adaptations in the discharge properties of master athletes' motor units are the likely consequence of an increased net excitatory synaptic drive to the motor neuron pool. These findings suggest a potential role of long-distance running in ameliorating declines in muscle function of older adults by enhancing the neural drive to muscle.


Assuntos
Adaptação Fisiológica/fisiologia , Atletas , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Corrida/fisiologia , Idoso , Eletromiografia/métodos , Humanos , Masculino , Corrida de Maratona/fisiologia , Corrida de Maratona/tendências , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Corrida/tendências
16.
PeerJ ; 8: e8949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377447

RESUMO

BACKGROUND: Perceived school self-efficacy (SE) is an important variable in students' activities as it affects their motivation and learning. Further, self-efficacy might represent a good predictor of performance, persistence and perseverance. Motor skills and other physical health determinants are extensively debated and linked to cognitive function in children of developmental age. However, inconclusive evidence supports a definitive relationship between perceived school SE and motor skills among schoolchildren. We conducted a cross-sectional study on 6-11-year-old schoolchildren to evaluate the extent by which perceived school SE and physical health determinants were related. METHODS: A SE questionnaire and motor performance battery tests were administered to primary school pupils recruited from 154 sampled schools of northwest Italy. Perceived SE at school was assessed via 12 items from the Caprara's questionnaire. Motor performance scores were obtained from motor skill tests: 4 × 10 m shuttle run test, SRT; standing broad jump, SBJ; six-minute walking test, 6MWT. RESULTS: A total of 3,962 children (M = 2,019; F = 1943) were studied and 68% were normal weight. Overall, a 58% of the sample perceived a high SE, while, as to gender differences, a greater percentage of females perceived high levels of school SE with respect to any other level (χ2 = 38.93, p < 0.0001). Results from multinomial logistic regression analysis revealed that: (i) females perceived higher SE compared to males; (ii) children who performed better in SRT and 6MWT showed higher levels of perceived school SE; (iii) no significant effect was registered for the body weight. Alternative strategies are encouraged to enhance SE through physical education: structured interventions might enhance both complex motor skills and high-order cognitive skills, like SE, in young children.

17.
Eur J Appl Physiol ; 105(1): 81-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18830618

RESUMO

To determine the differences between rock-climbers and controls in finger flexor (FF) motor units (MUs) features and activation strategy, eleven climbers and ten controls volunteered for the study. After maximal voluntary contraction (MVC) assessment, five levels of isometric contractions at 20, 40, 60, 80 and 100% MVC were performed. During contractions, electromyogram (EMG) and mechanomyogram (MMG) were recorded, from which the root mean square (RMS) and mean frequency (MF) were calculated. Climbers showed significantly higher MVC. EMG RMS was statistically higher in climbers than in controls from 60 to 100% MVC. In climbers MMG RMS increased up to 80% MVC, whereas in controls it increased only up to 60% MVC. MMG MF was higher in climbers than in controls from 60 to 100% MVC (P < 0.05). EMG-MMG combined analysis revealed significant differences in MU activation strategy between the two groups. The results are compatible with a shift of climbers' muscles toward faster MUs.


Assuntos
Antebraço/fisiologia , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Esforço Físico/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia/métodos , Humanos , Músculo Esquelético/fisiologia , Esportes
18.
BMJ Open Sport Exerc Med ; 5(1): e000505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673400

RESUMO

Return to play (RTP) decisions in football are currently based on expert opinion. No consensus guideline has been published to demonstrate an evidence-based decision-making process in football (soccer). Our aim was to provide a framework for evidence-based decision-making in RTP following lower limb muscle injuries sustained in football. A 1-day consensus meeting was held in Milan, on 31 August 2018, involving 66 national and international experts from various academic backgrounds. A narrative review of the current evidence for RTP decision-making in football was provided to delegates. Assembled experts came to a consensus on the best practice for managing RTP following lower limb muscle injuries via the Delphi process. Consensus was reached on (1) the definitions of 'return to training' and 'return to play' in football. We agreed on 'return to training' and RTP in football, the appropriate use of clinical and imaging assessments, and laboratory and field tests for return to training following lower limb muscle injury, and identified objective criteria for RTP based on global positioning system technology. Level of evidence IV, grade of recommendation D.

19.
J Neurosci Methods ; 173(1): 59-66, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18585787

RESUMO

UNLABELLED: Torque and laser detected surface mechanomyogram (MMG) analysis after electrical stimulation of human tibialis anterior (TA) of 14 male subjects was aimed to: (a) obtain the dynamic responses of TA muscle-joint unit from a long (LP, about 1h) and short (SP, 12.5s) stimulation protocol; (b) compare the resulting transfer function parameters from the two signals. The sinusoidal amplitude modulation of a 30 Hz stimulation train (SST) changed the number of the recruited motor units, and hence the isometric torque and the TA surface position in the same fashion. Subject instrumentation and SST amplitude range definition took about 25 min. SP: seven consecutive modulation frequencies (0.4, 6.0, 1.0, 4.5, 1.8, 3.0, and 2.5 Hz). LP: fourteen 5s long isolated frequencies (0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, and 6.0 Hz), 5 min rest in between. Poles position (Hz) and added delay (ms) for phase correction with respect to the input sine (parameters of a critically damped II order system) were: torque 2.44+/-0.27 Hz (SP) or 2.32+/-0.33 Hz (LP) and 18.3+/-2.2 ms (SP) or 17.2+/-4.5 ms (LP); MMG 2.28+/-0.30 Hz (SP) or 2.30+/-0.44 Hz (LP) and 17.4+/-5.6 ms (SP) or 17.4+/-6.4 ms (LP). Differences were never statistically significant. CONCLUSION: it is possible to characterise the in vivo mechanics of muscle-joint unit with a short (few seconds) stimulation protocol affordable in clinical environment using both torque and MMG signals.


Assuntos
Estimulação Elétrica/métodos , Articulações/inervação , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Torque , Adulto , Eletromiografia/métodos , Humanos , Masculino , Contração Muscular/fisiologia , Contração Muscular/efeitos da radiação , Recrutamento Neurofisiológico/efeitos da radiação , Processamento de Sinais Assistido por Computador , Fatores de Tempo
20.
Sports Med ; 48(7): 1607-1620, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29605838

RESUMO

Skeletal muscle operates as a near-constant volume system; as such muscle shortening during contraction is transversely linked to radial deformation. Therefore, to assess contractile properties of skeletal muscle, radial displacement can be evoked and measured. Mechanomyography measures muscle radial displacement and during the last 20 years, tensiomyography has become the most commonly used and widely reported technique among the various methodologies of mechanomyography. Tensiomyography has been demonstrated to reliably measure peak radial displacement during evoked muscle twitch, as well as muscle twitch speed. A number of parameters can be extracted from the tensiomyography displacement/time curve and the most commonly used and reliable appear to be peak radial displacement and contraction time. The latter has been described as a valid non-invasive means of characterising skeletal muscle, based on fibre-type composition. Over recent years, applications of tensiomyography measurement within sport and exercise have appeared, with applications relating to injury, recovery and performance. Within the present review, we evaluate the perceived strengths and weaknesses of tensiomyography with regard to its efficacy within applied sports medicine settings. We also highlight future tensiomyography areas that require further investigation. Therefore, the purpose of this review is to critically examine the existing evidence surrounding tensiomyography as a tool within the field of sports medicine.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miografia/métodos , Esportes/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA