Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Dairy Sci ; 107(3): 1370-1385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944807

RESUMO

Ropy defect of pasteurized fluid milk is a type of spoilage which manifests itself by an increased viscosity, slimy body, and string-like flow during pouring. This defect has, among other causes, been attributed to the growth, proliferation and exopolysaccharide production by coliform bacteria, which are most commonly introduced in milk as post-pasteurization contaminants. As we identified both Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata that were linked to a ropy defect, the goal of this study was to characterize 3 K. pneumoniae ssp. pneumoniae strains and 2 R. inusitata for (1) their ability to grow and cause ropy defect in milk at 6°C and 21°C and to (2) probe the genetic basis for observed ropy phenotype. Although all K. pneumoniae ssp. pneumoniae and R. inusitata strains showed net growth of >4 log10 over 48 h in UHT milk at 21°C, only R. inusitata strains displayed growth during 28-d incubation period at 6°C (>6 log10). Two out of 3 K. pneumoniae ssp. pneumoniae strains were capable of causing the ropy defect in milk at 21°C, as supported by an increase in the viscosity of milk and string-like flow during pouring; these 2 strains were originally isolated from raw milk. Only one R. inusitata strains was able to cause the ropy defect in milk; this strain was able to cause the defect at both 6°C and 21°C, and was originally isolated from a pasteurized milk. These findings suggest that the potential of K. pneumoniae ssp. pneumoniae and R. inusitata to cause ropy defect in milk is a strain-dependent characteristic. Comparative genomics provided no definitive answer on genetic basis for the ropy phenotype. However, for K. pneumoniae ssp. pneumoniae, genes rffG, rffH, rfbD, and rfbC involved in biosynthesis and secretion of enterobacterial common antigen (ECA) could only be found in the 2 strains that produced ropy defect, and for R. inusitata a set of 2 glycosyltransferase- and flippase genes involved in nucleotide sugar biosynthesis and export could only be identified in the ropy strain. Although these results provide some initial information for potential markers for strains that can cause ropy milk, the relationship between genetic content and ropiness in milk remains poorly understood and merits further investigation.


Assuntos
Genômica , Klebsiella pneumoniae , Rahnella , Animais , Klebsiella pneumoniae/genética , Klebsiella
2.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004131

RESUMO

Farmstead dairy processing facilities may be particularly susceptible to Listeria spp. contamination due to the close physical proximity of their processing environments (PE) to associated dairy farm environments (FE). In this case study, we supported the implementation of interventions focused on improving (i) cleaning and sanitation efficacy, (ii) hygienic zoning, and (iii) sanitary equipment/facility design and maintenance in a farmstead dairy processing facility, and evaluated their impact on Listeria spp. detection in the farmstead's PE over 1 year. Detection of Listeria spp. in the farmstead's PE was numerically reduced from 50% to 7.5% after 1 year of intervention implementation, suggesting that these interventions were effective at improving Listeria spp. control. In addition, environmental samples were also collected from the farmstead's FE to evaluate the risk of the FE as a potential source of Listeria spp. in the PE. Overall, detection of Listeria spp. was higher in samples collected from the FE (75%, 27/36) compared with samples collected from the PE (24%, 29/120). Whole genome sequencing (WGS) performed on select isolates collected from the PE and FE supported the identification of 6 clusters (range of 3 to 15 isolates per cluster) that showed ≤ 50 high quality single nucleotide polymorphism (hqSNP) differences. Of these 6 clusters, 3 (i.e., clusters 2, 4, and 5) contained isolates that were collected from both the PE and FE, suggesting that transmission between these 2 environments was likely. Moreover, all cluster 2 isolates represented a clonal complex (CC) of L. monocytogenes commonly associated with dairy farm environmental reservoirs (i.e., CC666), which may support that the farmstead's FE represented an upstream source of the cluster 2 isolates that were found in the PE. Overall, our data underscore that, while the FE can represent a potential upstream source of Listeria spp. contamination in a farmstead dairy processing facility, implementation of targeted interventions can help effectively minimize Listeria spp. contamination in the PE.

3.
Appl Environ Microbiol ; 88(22): e0117722, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286532

RESUMO

The contamination of ready-to-eat produce with Listeria monocytogenes (LM) can often be traced back to environmental sources in processing facilities and packinghouses. To provide an improved understanding of Listeria sources and transmission in produce operations, we performed whole-genome sequencing (WGS) of LM (n = 169) and other Listeria spp. (n = 107) obtained from 13 produce packinghouses and three fresh-cut produce facilities. Overall, a low proportion of LM isolates (9/169) had inlA premature stop codons, and a large proportion (83/169) had either or both of the LIPI-3 or LIPI-4 operons, which have been associated with hypervirulence. The further analysis of the WGS data by operation showed a reisolation (at least 2 months apart) of highly related isolates (<10 hqSNP differences) in 7/16 operations. Two operations had highly related strains reisolated from samples that were collected at least 1 year apart. The identification of isolates collected during preproduction (i.e., following sanitation but before the start of production) that were highly related to isolates collected during production (i.e., after people or products have entered and begun moving through the operation) provided evidence that some strains were able to survive standard sanitation practices. The identification of closely related isolates (<20 hqSNPs differences) in different operations suggests that cross-contamination between facilities or introductions from common suppliers may also contribute to Listeria transmission. Overall, our data suggest that the majority of LM isolates collected from produce operations are fully virulent and that both persistence and reintroduction may lead to the repeat isolation of closely related Listeria in produce operations. IMPORTANCE Listeria monocytogenes is of particular concern to the produce industry due to its frequent presence in natural environments as well as its ability to survive in packinghouses and fresh-cut processing facilities over time. The use of whole-genome sequencing, which provides high discriminatory power for the characterization of Listeria isolates, along with detailed source data (isolation date and sample location) shows that the presence of Listeria in produce operations appears to be due to random and continued reintroduction as well as to the persistence of highly related strains in both packinghouses and fresh-cut facilities. These findings indicate the importance of using high-resolution characterization approaches for root cause analyses of Listeria contamination issues. In cases of repeat isolation of closely related Listeria in a given facility, both persistence and reintroduction need to be considered as possible root causes.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Humanos , Listeria/genética , Microbiologia de Alimentos , Sequenciamento Completo do Genoma
4.
Appl Environ Microbiol ; 87(21): e0103621, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34406824

RESUMO

Salmonella enterica serovar Heidelberg is isolated from poultry-producing regions around the world. In Brazil, S. Heidelberg has been frequently detected in poultry flocks, slaughterhouses, and chicken meat. The goal of the present study was to assess the population structure, recent temporal evolution, and some important genetic characteristics of S. Heidelberg isolated from Brazilian poultry farms. Phylogenetic analysis of 68 S. Heidelberg genomes sequenced here and additional whole-genome data from NCBI demonstrated that all isolates from the Brazilian poultry production chain clustered into a monophyletic group, here called S. Heidelberg Brazilian poultry lineage (SH-BPL). Bayesian analysis defined the time of the most recent common ancestor (tMRCA) as 2004, and the overall population size (Ne) was constant until 2008, when an ∼10-fold Ne increase was observed until circa 2013. SH-BPL presented at least two plasmids with replicons ColpVC (n = 68; 100%), IncX1 (n = 66; 97%), IncA/C2 (n = 65; 95.5%), ColRNAI (n = 43; 63.2%), IncI1 (n = 32; 47%), ColMG828, Col156, IncHI2A, IncHI2, IncQ1, IncX4, IncY, and TrfA (each with n < 4; <4% each). Antibiotic resistance genes were found, with high frequencies of fosA7 (n = 68; 100%), mdf(A) (n = 68; 100%), tet(34) (n = 68; 100%), sul2 (n = 64; 94.1%), and blaCMY-2 (n = 56; 82.3%), along with an overall multidrug resistance (MDR) profile. Ten Salmonella pathogenicity islands (SPI1 to SPI5, SPI9, and SPI11 to SPI14) and 139 virulence genes were also detected. The SH-BPL profile was like those of other previous S. Heidelberg isolates from poultry around the world in the 1990s. In conclusion, the present study demonstrates the recent introduction (2004) and high level of dissemination of an MDR S. Heidelberg lineage in Brazilian poultry operations. IMPORTANCES. Heidelberg is the most frequent serovar in several broiler farms from the main Brazilian poultry-producing regions. Therefore, avian-source foods (mainly chicken carcasses) commercialized in the country and exported to other continents are contaminated with this foodborne pathogen, generating several national and international economic losses. In addition, isolates of this serovar are usually resistant to antibiotics and can cause human invasive and septicemic infection, representing a public health concern. This study demonstrates the use of whole-genome sequencing (WGS) to obtain epidemiological information for one S. Heidelberg lineage highly spread among Brazilian poultry farms. This information will help to define biosecurity measures to control this important Salmonella serovar in Brazilian and worldwide poultry operations.


Assuntos
Galinhas/microbiologia , Genoma Bacteriano , Aves Domésticas , Salmonella , Animais , Teorema de Bayes , Brasil , Fazendas , Genômica , Filogenia , Aves Domésticas/microbiologia , Salmonella/genética , Sorogrupo , Sequenciamento Completo do Genoma
5.
Artigo em Inglês | MEDLINE | ID: mdl-33999788

RESUMO

A total of 27 Listeria isolates that could not be classified to the species level were obtained from soil samples from different locations in the contiguous United States and an agricultural water sample from New York. Whole-genome sequence-based average nucleotide identity blast (ANIb) showed that the 27 isolates form five distinct clusters; for each cluster, all draft genomes showed ANI values of <95 % similarity to each other and any currently described Listeria species, indicating that each cluster represents a novel species. Of the five novel species, three cluster with the Listeria sensu stricto clade and two cluster with sensu lato. One of the novel sensu stricto species, designated L. cossartiae sp. nov., contains two subclusters with an average ANI similarity of 94.9%, which were designated as subspecies. The proposed three novel sensu stricto species (including two subspecies) are Listeria farberi sp. nov. (type strain FSL L7-0091T=CCUG 74668T=LMG 31917T; maximum ANI 91.9 % to L. innocua), Listeria immobilis sp. nov. (type strain FSL L7-1519T=CCUG 74666T=LMG 31920T; maximum ANI 87.4 % to L. ivanovii subsp. londoniensis) and Listeria cossartiae sp. nov. [subsp. cossartiae (type strain FSL L7-1447T=CCUG 74667T=LMG 31919T; maximum ANI 93.4 % to L. marthii) and subsp. cayugensis (type strain FSL L7-0993T=CCUG 74670T=LMG 31918T; maximum ANI 94.7 % to L. marthii). The two proposed novel sensu lato species are Listeria portnoyi sp. nov. (type strain FSL L7-1582T=CCUG 74671T=LMG 31921T; maximum ANI value of 88.9 % to L. cornellensis and 89.2 % to L. newyorkensis) and Listeria rustica sp. nov. (type strain FSL W9-0585T=CCUG 74665T=LMG 31922T; maximum ANI value of 88.7 % to L. cornellensis and 88.9 % to L. newyorkensis). L. immobilis is the first sensu stricto species isolated to date that is non-motile. All five of the novel species are non-haemolytic and negative for phosphatidylinositol-specific phospholipase C activity; the draft genomes lack the virulence genes found in Listeria pathogenicity island 1 (LIPI-1), and the internalin genes inlA and inlB, indicating that they are non-pathogenic.


Assuntos
Irrigação Agrícola , Listeria/classificação , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Listeria/isolamento & purificação , New York , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Microbiol ; 22(7): 2811-2828, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32337816

RESUMO

Genetic variation in a pathogen, including the causative agent of salmonellosis, Salmonella enterica, can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches. Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) S. enterica isolates from bovine and human hosts in New York and Washington states to understand host- and geographic-associated population structure. Results revealed distinct presence/absence profiles of functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates. Notably, bovine isolates contained significantly more transposase genes but fewer transposase pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes of bovine and human isolates at different times. The high correlation between transposase genes and AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding genes, including some essential for antibiotic resistance and host colonization. Overall, different evolutionary forces and limited recent inter-population transmission appear to shape AMR S. enterica population structure in different hosts and geographic origins.


Assuntos
Genômica , Salmonella enterica/classificação , Salmonella enterica/genética , Animais , Bovinos , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Genética Populacional , Humanos , New York , Filogeografia , Plasmídeos , Virulência/genética , Washington
7.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31900305

RESUMO

Whole-genome sequencing (WGS) is becoming the standard method for subtyping Listeria monocytogenes Interpretation of WGS data for isolates from foods and associated environments is, however, challenging due to a lack of detailed data on Listeria evolution in processing facilities. Here, we used previously collected WGS data for 40 L. monocytogenes isolates obtained from a cold-smoked salmon processing facility between 1998 and 2015 to probe the L. monocytogenes molecular evolution in this facility, combined with phenotypic assessment of selected isolates. Isolates represented three clusters (1, 2, and 3); cluster 3 isolates (n = 32) were obtained over 18 years. The average mutation rate for cluster 3 was estimated as 1.15 × 10-7 changes per nucleotide per year (∼0.35 changes per genome per year); the most recent common ancestors (MRCAs) of subclusters 3a and 3b were estimated to have occurred around 1958 and 1974, respectively, within the age of the facility, suggesting long-term persistence in this facility. Extensive prophage diversity was observed within subclusters 3a and 3b, which have one shared and six unique prophage profiles for each subcluster (with 16 prophage profiles found among all 40 isolates). The plasmid-borne sanitizer tolerance operon bcrABC was found in all cluster 2 and 3 isolates, while the transposon-borne sanitizer tolerance gene qacH was found in one cluster 1 isolate; presence of these genes was correlated with the ability to survive increased concentrations of sanitizers. Selected isolates showed significant variation in the ability to attach to surfaces, with persistent isolates attaching better than transient isolates at 21°C.IMPORTANCE Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.).


Assuntos
Substituição de Aminoácidos , Evolução Molecular , Manipulação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes/genética , Prófagos/fisiologia , Genoma Bacteriano , Listeria monocytogenes/virologia , Filogenia , Sequenciamento Completo do Genoma
8.
BMC Evol Biol ; 19(1): 132, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226931

RESUMO

BACKGROUND: The emergence of antimicrobial-resistant (AMR) strains of the important human and animal pathogen Salmonella enterica poses a growing threat to public health. Here, we studied the genome-wide evolution of 90 S. enterica AMR isolates, representing one host adapted serotype (S. Dublin) and two broad host range serotypes (S. Newport and S. Typhimurium). RESULTS: AMR S. Typhimurium had a large effective population size, a large and diverse genome, AMR profiles with high diversity, and frequent positive selection and homologous recombination. AMR S. Newport showed a relatively low level of diversity and a relatively clonal population structure. AMR S. Dublin showed evidence for a recent population bottleneck, and the genomes were characterized by a larger number of genes and gene ontology terms specifically absent from this serotype and a significantly higher number of pseudogenes as compared to other two serotypes. Approximately 50% of accessory genes, including specific AMR and putative prophage genes, were significantly over- or under-represented in a given serotype. Approximately 65% of the core genes showed phylogenetic clustering by serotype, including the AMR gene aac (6')-Iaa. While cell surface proteins were shown to be the main target of positive selection, some proteins with possible functions in AMR and virulence also showed evidence for positive selection. Homologous recombination mainly acted on prophage-associated proteins. CONCLUSIONS: Our data indicates a strong association between genome content of S. enterica and serotype. Evolutionary patterns observed in S. Typhimurium are consistent with multiple emergence events of AMR strains and/or ecological success of this serotype in different hosts or habitats. Evolutionary patterns of S. Newport suggested that antimicrobial resistance emerged in one single lineage, Lineage IIC. A recent population bottleneck and genome decay observed in AMR S. Dublin are congruent with its narrow host range. Finally, our results suggest the potentially important role of positive selection in the evolution of antimicrobial resistance, host adaptation and serotype diversification in S. enterica.


Assuntos
Antibacterianos/farmacologia , Evolução Molecular , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo , Humanos , Filogenia
9.
J Dairy Sci ; 102(7): 5979-6000, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31128867

RESUMO

Some gram-negative bacteria, including Pseudomonas spp., can grow at refrigeration temperatures and cause flavor, odor, and texture defects in fluid milk. Historical and modern cases exist of gray and blue color defects in fluid milk due to Pseudomonas, and several recent reports have detailed fresh cheese spoilage associated with blue-pigment-forming Pseudomonas. Our goal was to investigate the genomes of pigmented Pseudomonas isolates responsible for historical and modern pigmented spoilage of dairy products in the United States to determine the genetic basis of pigment-forming phenotypes. We performed whole genome sequencing of 9 Pseudomonas isolates: 3 from recent incidents of gray-pigmented fluid milk (Pseudomonas fluorescens group), 1 from blue-pigmented cheese (P. fluorescens group), 2 from a historical blue milk spoilage incident (Pseudomonas putida group), and 3 with no evidence for blue or gray pigment formation (2 from P. fluorescens group and 1 from Pseudomonas chlororaphis group). All 6 isolates collected from products with a gray or blue pigment defect were confirmed to produce pigment using potato dextrose agar or pasteurized milk. A subset of 2 isolates was selected for inoculation into milk and onto the surface of a model cheese for subsequent color measurement. These isolates produced different colors on potato dextrose agar, but produced nearly identical color defects in milk and on model cheese. For the same subset of 2 isolates, the gray color defect in milk was produced only in containers with ample headspace and not in full containers, suggesting that oxygen is vital for pigment formation. This work also demonstrated that a Pseudomonas isolate from cheese can produce a pigment defect in milk, and vice versa. Comparative genomics identified an accessory locus encoding tryptophan biosynthesis genes that was present in all isolates that produced gray or blue pigment under laboratory conditions and was only previously reported in 2 P. fluorescens isolates responsible for blue mozzarella in Italy. Because this locus was found in genetically distant isolates belonging to different Pseudomonas species groups, it may have been acquired via horizontal gene transfer. These data suggest that several past and present gray- or blue-pigmented dairy spoilage events share a common genetic etiology that transcends species-level identification and merits further investigation to determine mechanistic details and modes of prevention.


Assuntos
Queijo/análise , Genoma Bacteriano/fisiologia , Leite/química , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Animais , Queijo/microbiologia , Cor , Loci Gênicos/fisiologia , Genômica , Itália , Leite/microbiologia , Fenótipo , Pigmentação , Pigmentos Biológicos/biossíntese , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo
10.
BMC Genomics ; 17: 115, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26880300

RESUMO

BACKGROUND: Alternative σ factors are important transcriptional regulators in bacteria. While σ(B) has been shown to control a large regulon and play important roles in stress response and virulence in the pathogen Listeria monocytogenes, the function of σ(H) has not yet been well defined in Listeria, even though σ(H) controls a large regulon in the closely related non-pathogenic Bacillus subtilis. RESULTS: Using RNA-seq characterization of a L. monocytogenes strain with deletions of all 4 genes encoding alternative σ factors (ΔBCHL), which was further modified to overexpress sigH (ΔBCHL::P rha -sigH), we identified 6 transcription units (TUs) that are transcribed from σ(H)-dependent promoters. Five of these TUs had not been previously identified. Identification of these promoters was facilitated by use of a bio-informatics approach that compared normalized RNA-seq coverage (NRC), between ΔBCHL::P rha -sigH and a ΔBCHL control, using sliding windows of 51 nt along the whole genome rather than comparing NRC calculated only for whole genes. Interestingly, we found that three operons that encode competence genes (comGABCDEFG, comEABC, coiA) are transcribed from σ(H)-dependent promoters. While these promoters were highly conserved in L. monocytogenes, none of them were found in all Listeria spp. and coiA and its σ(H)-dependent promoter were only found in L. monocytogenes. CONCLUSIONS: Our data indicate that a number of L. monocytogenes competence genes are regulated by σ(H). This σ(H)-dependent regulation of competence related genes is conserved in the pathogen L. monocytogenes, but not in other non-pathogenic Listeria strains. Combined with prior data that indicated a role of σ(H) in virulence in a mouse model, this suggests a possible novel role of σ(H)-dependent competence genes in L. monocytogenes virulence. Development and implementation of a sliding window approach to identify differential transcription using RNA-seq data, not only allowed for identification of σ(H)-dependent promoters, but also provides a general approach for sensitive identification of differentially transcribed promoters and genes, particularly for genes that are transcribed from multiple promoter elements only some of which show differential transcription.


Assuntos
Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Listeria monocytogenes/genética , RNA Bacteriano , Análise de Sequência de RNA , Fator sigma/genética , Sequência de Bases , Sequência Conservada , Motivos de Nucleotídeos , Óperon , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fator sigma/metabolismo
12.
Appl Microbiol Biotechnol ; 100(12): 5273-87, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27129530

RESUMO

The genus Listeria is currently comprised of 17 species, including 9 Listeria species newly described since 2009. Genomic and phenotypic data clearly define a distinct group of six species (Listeria sensu strictu) that share common phenotypic characteristics (e.g., ability to grow at low temperature, flagellar motility); this group includes the pathogen Listeria monocytogenes. The other 11 species (Listeria sensu lato) represent three distinct monophyletic groups, which may warrant recognition as separate genera. These three proposed genera do not contain pathogens, are non-motile (except for Listeria grayi), are able to reduce nitrate (except for Listeria floridensis), and are negative for the Voges-Proskauer test (except for L. grayi). Unlike all other Listeria species, species in the proposed new genus Mesolisteria are not able to grow below 7 °C. While most new Listeria species have only been identified in a few countries, the availability of molecular tools for rapid characterization of putative Listeria isolates will likely lead to future identification of isolates representing these new species from different sources. Identification of Listeria sensu lato isolates has not only allowed for a better understanding of the evolution of Listeria and virulence characteristics in Listeria but also has practical implications as detection of Listeria species is often used by the food industry as a marker to detect conditions that allow for presence, growth, and persistence of L. monocytogenes. This review will provide a comprehensive critical summary of our current understanding of the characteristics and distribution of the new Listeria species with a focus on Listeria sensu lato.


Assuntos
Listeria/classificação , Listeria/isolamento & purificação , Evolução Biológica , Genoma Bacteriano , Listeria/genética , Listeria/fisiologia , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Filogenia , Especificidade da Espécie , Virulência
13.
Appl Environ Microbiol ; 81(24): 8339-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407886

RESUMO

In Listeria monocytogenes, 18 mutations leading to premature stop codons (PMSCs) in the virulence gene inlA have been identified to date. While most of these mutations represent nucleotide substitutions, a frameshift deletion in a 5' seven-adenine homopolymeric tract (HT) in inlA has also been reported. This HT may play a role in phase variation and was first identified among L. monocytogenes lineage II ribotype DUP-1039C isolates. In order to better understand the distribution of different inlA mutations in this ribotype, a newly developed multiplex real-time PCR assay was used to screen 368 DUP-1039C isolates from human, animal, and food-associated sources for three known 5' inlA HT alleles: (i) wild-type (WT) (A7), (ii) frameshift (FS) (A6), and (iii) guanine interruption (A2GA4) alleles. Additionally, 228 DUP-1039C isolates were screened for all inlA PMSCs; data on the presence of all inlA PMSCs for the other 140 isolates were obtained from previous studies. The statistical analysis based on 191 epidemiologically unrelated strains showed that strains with inlA PMSC mutations (n = 41) were overrepresented among food-associated isolates, while strains encoding full-length InlA (n = 150) were overrepresented among isolates from farm animals and their environments. Furthermore, the A6 allele was overrepresented and the A7 allele was underrepresented among food isolates, while the A6 allele was underrepresented among farm and animal isolates. Our results indicate that genetic variation in inlA contributes to niche adaptation within the lineage II subtype DUP-1039C.


Assuntos
Proteínas de Bactérias/genética , Frequência do Gene/genética , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Alelos , Animais , Sequência de Bases , Códon sem Sentido/genética , Microbiologia de Alimentos , Genótipo , Humanos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
14.
Appl Environ Microbiol ; 81(19): 6812-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209664

RESUMO

The foodborne pathogen Listeria monocytogenes is able to survive and grow in ready-to-eat foods, in which it is likely to experience a number of environmental stresses due to refrigerated storage and the physicochemical properties of the food. Little is known about the specific molecular mechanisms underlying survival and growth of L. monocytogenes under different complex conditions on/in specific food matrices. Transcriptome sequencing (RNA-seq) was used to understand the transcriptional landscape of L. monocytogenes strain H7858 grown on cold smoked salmon (CSS; water phase salt, 4.65%; pH 6.1) relative to that in modified brain heart infusion broth (MBHIB; water phase salt, 4.65%; pH 6.1) at 7°C. Significant differential transcription of 149 genes was observed (false-discovery rate [FDR], <0.05; fold change, ≥2.5), and 88 and 61 genes were up- and downregulated, respectively, in H7858 grown on CSS relative to the genes in H7858 grown in MBHIB. In spite of these differences in transcriptomes under these two conditions, growth parameters for L. monocytogenes were not significantly different between CSS and MBHIB, indicating that the transcriptomic differences reflect how L. monocytogenes is able to facilitate growth under these different conditions. Differential expression analysis and Gene Ontology enrichment analysis indicated that genes encoding proteins involved in cobalamin biosynthesis as well as ethanolamine and 1,2-propanediol utilization have significantly higher transcript levels in H7858 grown on CSS than in that grown in MBHIB. Our data identify specific transcriptional profiles of L. monocytogenes growing on vacuum-packaged CSS, which may provide targets for the development of novel and improved strategies to control L. monocytogenes growth on this ready-to-eat food.


Assuntos
Produtos Pesqueiros/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Adaptação Fisiológica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contaminação de Alimentos/análise , Embalagem de Alimentos , Conservação de Alimentos , Listeria monocytogenes/fisiologia , Salmão/microbiologia , Transcriptoma , Vácuo
15.
BMC Genomics ; 15: 26, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24422886

RESUMO

BACKGROUND: Sporeformers in the order Bacillales are important contributors to spoilage of pasteurized milk. While only a few Bacillus and Viridibacillus strains can grow in milk at 6°C, the majority of Paenibacillus isolated from pasteurized fluid milk can grow under these conditions. To gain a better understanding of genomic features of these important spoilage organisms and to identify candidate genomic features that may facilitate cold growth in milk, we performed a comparative genomic analysis of selected dairy associated sporeformers representing isolates that can and cannot grow in milk at 6°C. RESULTS: The genomes for seven Paenibacillus spp., two Bacillus spp., and one Viridibacillus sp. isolates were sequenced. Across the genomes sequenced, we identified numerous genes encoding antimicrobial resistance mechanisms, bacteriocins, and pathways for synthesis of non-ribosomal peptide antibiotics. Phylogenetic analysis placed genomes representing Bacillus, Paenibacillus and Viridibacillus into three distinct well supported clades and further classified the Paenibacillus strains characterized here into three distinct clades, including (i) clade I, which contains one strain able to grow at 6°C in skim milk broth and one strain not able to grow under these conditions, (ii) clade II, which contains three strains able to grow at 6°C in skim milk broth, and (iii) clade III, which contains two strains unable to grow under these conditions. While all Paenibacillus genomes were found to include multiple copies of genes encoding ß-galactosidases, clade II strains showed significantly higher numbers of genes encoding these enzymes as compared to clade III strains. Genome comparison of strains able to grow at 6°C and strains unable to grow at this temperature identified numerous genes encoding features that might facilitate the growth of Paenibacillus in milk at 6°C, including peptidases with cold-adapted features (flexibility and disorder regions in the protein structure) and cold-adaptation related proteins (DEAD-box helicases, chaperone DnaJ). CONCLUSIONS: Through a comparative genomics approach we identified a number of genomic features that may relate to the ability of selected Paenibacillus strains to cause spoilage of refrigerated fluid milk. With additional experimental evidence, these data will facilitate identification of targets to detect and control Gram positive spore formers in fluid milk.


Assuntos
Bacillus/genética , Genoma Bacteriano , Leite/microbiologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bovinos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Paenibacillus/fisiologia , Fenótipo , Filogenia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
Appl Environ Microbiol ; 80(24): 7673-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281379

RESUMO

Alternative sigma (σ) factors and phosphotransferase systems (PTSs) play pivotal roles in the environmental adaptation and virulence of Listeria monocytogenes. The growth of the L. monocytogenes parent strain 10403S and 15 isogenic alternative σ factor mutants was assessed in defined minimal medium (DM) with PTS-dependent or non-PTS-dependent carbon sources at 25°C or 37°C. Overall, our results suggested that the regulatory effect of alternative σ factors on the growth of L. monocytogenes is dependent on the temperature and the carbon source. One-way analysis of variance (one-way ANOVA) showed that the factor "strain" had a significant effect on the maximum growth rate (µmax), lag phase duration (λ), and maximum optical density (ODmax) in PTS-dependent carbon sources (P < 0.05) but not in a non-PTS-dependent carbon source. Also, the ODmax was not affected by strain for any of the three PTS-dependent carbon sources at 25°C but was affected by strain at 37°C. Monitoring by quantitative real-time PCR (qRT-PCR) showed that transcript levels for lmo0027, a glucose-glucoside PTS permease (PTS(Glc)-1)-encoding gene, were higher in the absence of σ(L), and lower in the absence of σ(H), than in the parent strain. Our data thus indicate that σ(L) negatively regulates lmo0027 and that the increased µmax observed for the ΔsigL strain in DM with glucose may be associated with increased expression of PTS(Glc)-1 encoded by lmo0027. Our findings suggest that σ(H) and σ(L) mediate the PTS-dependent growth of L. monocytogenes through complex transcriptional regulations and fine-tuning of the expression of specific pts genes, including lmo0027. Our findings also reveal a more important and complex role of alternative σ factors in the regulation of growth in different sugar sources than previously assumed.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Listeria monocytogenes/enzimologia , Listeria monocytogenes/crescimento & desenvolvimento , Fosfotransferases/genética , Fosfotransferases/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Fator sigma/genética
17.
J Food Prot ; 87(8): 100324, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960322

RESUMO

Controlling Listeria in produce packinghouses can be challenging due to the large number of potential contamination routes. For example, repeated isolation of the same Listeria subtype in a packinghouse could indicate persistence in the packinghouse or reintroduction of the same Listeria from an upstream source. To improve understanding of Listeria transmission patterns in packinghouses, we performed a longitudinal study in four apple packinghouses, including testing of 1,339 environmental sponges and whole genome sequencing (WGS)-based characterization of 280 isolates. Root cause analysis and subsequent intervention implementation were also performed and assessed for effectiveness. Listeria prevalence among environmental sponges collected from the four packinghouses was 20% (range of 5-31% for individual packinghouses). Sites that showed high Listeria prevalence included drains, forklift tires and forks, forklift stops, and waxing area equipment frames. A total of 240/280 WGS-characterized isolates were represented in 41 clusters, each containing two or more isolates that differed by ≤50 high-quality single nucleotide polymorphisms (hqSNPs); 21 clusters were isolated from one packinghouse over ≥2 samplings (suggesting persistence or possibly reintroduction), while 11 clusters included isolates from >2 packinghouses, suggesting common upstream sources. Some interventions successfully (i) reduced Listeria detection on forklift tires and forks (across packinghouses) and (ii) mitigated packinghouse-specific Listeria issues (e.g., in catch pans). However, interventions that lacked enhanced equipment disassembly when persistence was suspected typically appeared to be unsuccessful. Overall, while our data suggest a combination of intensive environmental sampling with subtyping and root cause analysis can help identify effective interventions, implementation of effective interventions continues to be a challenge in packinghouses.


Assuntos
Monitoramento Ambiental , Contaminação de Alimentos , Microbiologia de Alimentos , Listeria , Malus , Malus/microbiologia , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Humanos
18.
mBio ; : e0191324, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287448

RESUMO

Most foodborne salmonellosis outbreaks are linked to agricultural animal products with a few serovars accounting for most Salmonella isolated from specific animal products, suggesting an adaptation to the corresponding animal hosts and their respective environments. Here, we utilized whole-genome sequence (WGS) data to analyze the evolution and population genetics of seven serovars frequently isolated from ground beef (Montevideo, Cerro, and Dublin), chicken (Kentucky, Infantis, and Enteritidis), and turkey (Reading) in the United States. In addition, publicly available metadata were used to characterize major clades within each serovar with regard to public health significance. Except for Dublin, all serovars were polyphyletic, comprising 2-6 phylogenetic groups. Further partitioning of the phylogenies identified 25 major clades, including 12 associated with animal or environmental niches. These 12 clades differed in evolutionary parameters (e.g., substitution rates) as well as public health relevant characteristics (e.g., association with human illness, antimicrobial resistance). Overall, our results highlight several critical trends: (i) the Salmonella generation time appears to be more dependent on source than serovar and (ii) all serovars contain clades and sub-clades that are estimated to have emerged after the year 1940 and that are enriched for isolates associated with humans, agricultural animals, antimicrobial resistance (AMR), and/or specific geographical regions. These findings suggest that serotyping alone does not provide enough resolution to differentiate isolates that may have evolved independently, present distinct geographic distribution and host association, and possibly have distinct public health significance. IMPORTANCE: Non-typhoidal Salmonella are major foodborne bacterial pathogens estimated to cause more than one million illnesses, thousands of hospitalizations, and hundreds of deaths annually in the United States. More than 70% of Salmonella outbreaks in the United States have been associated with agricultural animals. Certain serovars include persistent strains that have repeatedly contaminated beef, chicken, and turkey, causing outbreaks and sporadic cases over many years. These persistent strains represent a particular challenge to public health, as they are genetically clonal and widespread, making it difficult to differentiate distinct outbreak and contamination events using whole-genome sequence (WGS)-based subtyping methods (e.g., core genome allelic typing). Our results indicate that a phylogenetic approach is needed to investigate persistent strains and suggest that the association between a Salmonella serovar and an agricultural animal is driven by the expansion of clonal subtypes that likely became adapted to specific animals and associated environments.

19.
J Food Prot ; 87(5): 100270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552796

RESUMO

Digital tools to predict produce shelf life have the potential to reduce food waste and improve consumer satisfaction. To address this need, we (i) performed an observational study on the microbial quality of baby spinach, (ii) completed growth experiments of bacteria that are representative of the baby spinach microbiota, and (iii) developed an initial simulation model of bacterial growth on baby spinach. Our observational data showed that the predominant genera found on baby spinach were Pseudomonas, Pantoea and Exiguobacterium. Rifampicin-resistant mutants (rifR mutants) of representative bacterial subtypes were subsequently generated to obtain strain-specific growth parameters on baby spinach. These experiments showed that: (i) it is difficult to select rifR mutants that do not have fitness costs affecting growth (9 of 15 rifR mutants showed substantial differences in growth, compared to their corresponding wild-type strain) and (ii) based on estimates from primary growth models, the mean (geometric) maximum population of rifR mutants on baby spinach (7.6 log10 CFU/g, at 6°C) appears lower than that of the spinach microbiota (9.6 log10 CFU/g, at 6°C), even if rifR mutants did not have substantial growth-related fitness costs. Thus, a simulation model, parameterized with the data obtained here as well as literature data on home refrigeration temperatures, underestimated bacterial growth on baby spinach. The root mean square error of the simulation's output, compared against data from the observational study, was 1.11 log10 CFU/g. Sensitivity analysis was used to identify key parameters (e.g., strain maximum population) that impact the simulation model's output, allowing for prioritization of future data collection to improve the simulation model. Overall, this study provides a roadmap for the development of models to predict bacterial growth on leafy vegetables with strain-specific parameters and suggests that additional data are required to improve these models.


Assuntos
Microbiologia de Alimentos , Spinacia oleracea , Spinacia oleracea/microbiologia , Contagem de Colônia Microbiana , Bactérias/crescimento & desenvolvimento , Humanos , Contaminação de Alimentos
20.
mBio ; 15(2): e0093823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126771

RESUMO

Since 2010, the genus Listeria has had the addition of 22 new species that more than tripled the number of species identified until 2010. Sixteen of these 22 new species are distantly related to the type species, Listeria monocytogenes, and several of these present phenotypes that distinguish them from classical Listeria species (L. monocytogenes, Listeria innocua, Listeria ivanovii, Listeria seeligeri, Listeria welshimeri, and Listeria grayi). These 22 newly described species also show that Listeria is more genetically diverse than previously estimated. While future studies and surveys are needed to clarify the distribution of these species, at least some of these species may not be widely spread, while other species may be frequently found spread to human-related settings (e.g., farms and processing facilities), and others may be adapted to specific environmental habitats. Here, we review the taxonomic, phylogenetic, and ecological characteristics of these new Listeria species identified since 2010 and re-iterate the suggestion of re-classification of some species into three new genera: Murraya, Mesolisteria, and Paenilisteria. We also provide a review of current detection issues and the relevance to food safety related to the identification of these new species. For example, several new non-pathogenic species could be misidentified as the pathogen L. monocytogenes, based on methods that do not target L. monocytogenes-specific virulence genes/factors, leading to unnecessary product recalls. Moreover, eight species in the proposed new genus Mesolisteria are not good indicators of environmental conditions that could allow L. monocytogenes to grow since Mesolisteria species are unable to grow at low temperatures.


Assuntos
Listeria monocytogenes , Listeria , Humanos , Filogenia , Listeria/genética , Fatores de Virulência/genética , Inocuidade dos Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA